Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(7): 7869-7878, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31825195

RESUMO

Aqueous-liquid crystal (LC) interfaces offer promise as responsive interfaces at which biomolecular recognition events can be amplified into macroscopic signals. However, the design of LC interfaces that distinguish between specific and non-specific protein interactions remains an unresolved challenge. Herein, we report the synthesis of amphiphilic monomers, dimers, and trimers conjugated to sulfonamide ligands via triazole rings, their assembly at aqueous-LC interfaces, and the orientational response of LCs to the interactions of carbonic anhydrase II (CAII) and serum albumin with the oligomer-decorated LC interfaces. Of six oligomers synthesized, only dimers without amide methylation were found to assemble at aqueous interfaces of nematic 4-cyano-4'-pentylbiphenyl (5CB) to induce perpendicular LC orientations. At dimer-decorated LC interfaces, we found that concentrations of CAII less than 4 µM did not measurably perturb the LC but prevented non-specific adsorption and penetration of serum albumin into the dimer-decorated interface that otherwise triggered bright, globular LC optical domains. These experiments and others (including competitive adsorption of CAII, BSA, and lysozyme) support our hypothesis that specific binding of CAII to the dimer prevents LC anchoring transitions triggered by non-specific adsorption of serum albumin. We illustrate the utility of the approach by reporting (i) the relative activity of two small-molecule inhibitors (6-ethoxy-2-benzothiazolesulfonamide and benzenesulfonamide) of CAII to sulfonamide and (ii) proteolytic digestion of a protein (CAII) by thermolysin. Overall, the results in this paper provide new insight into the interactions of proteins at aqueous-LC interfaces and fresh ideas for either blocking non-specific interactions of proteins at surfaces or reporting specific binding events at LC interfaces in the presence of non-specific proteins.


Assuntos
Compostos de Bifenilo/química , Cristais Líquidos/química , Nitrilas/química , Polímeros/química , Proteínas/química , Sulfonamidas/química , Água/química , Adsorção , Anidrase Carbônica II/química , Etil-Éteres/química , Ligantes , Microscopia , Estrutura Molecular , Muramidase/química , Ligação Proteica , Albumina Sérica/química , Propriedades de Superfície , Termolisina/química , Triazóis/química , Benzenossulfonamidas
2.
Xenobiotica ; 49(3): 346-362, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29543539

RESUMO

Sulfoquinovosylacylpropanediol (SQAP) is a novel potent radiosensitizer that inhibits angiogenesis in vivo and results in increased oxigenation and reduced tumor volume. We investigated the distribution, metabolism, and excretion of SQAP in male KSN-nude mice transplanted with a human pulmonary carcinoma, Lu65. For the metabolism analysis, a 2 mg (2.98 MBq)/kg of [glucose-U-14C]-SQAP (CP-3839) was intravenously injected. The injected SQAP was decomposed into a stearic acid and a sulfoquinovosylpropanediol (SQP) in the body. The degradation was relatively slow in the carcinoma tissue.1,3-propanediol[1-14C]-SQAP (CP-3635) was administered through intravenous injection of a 1 mg (3.48 MBq)/kg dose followed by whole body autoradiography of the mice. The autoradiography analysis demonstrated that SQAP rapidly distributed throughout the whole body and then quickly decreased within 4 hours except the tumor and excretion organs such as liver, kidney. Retention of SQAP was longer in tumor parts than in other tissues, as indicated by higher levels of radioactivity at 4 hours. The radioactivity around the tumor had also completely disappeared within 72 hours.


Assuntos
Glicolipídeos/farmacocinética , Radiossensibilizantes/farmacocinética , Administração Intravenosa , Animais , Autorradiografia , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Glicolipídeos/administração & dosagem , Glicolipídeos/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos Nus , Radiossensibilizantes/administração & dosagem , Radiossensibilizantes/uso terapêutico , Espectrometria de Massas em Tandem
3.
ACS Omega ; 3(12): 18323-18333, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458409

RESUMO

We developed a high-power abiotic direct glucose fuel cell system using a Au-Pt bimetallic anode catalyst. The high power generation (95.7 mW cm-2) was attained by optimizing operating conditions such as the composition of a bimetallic anode catalyst, loading amount of the metal catalyst on a carbon support, ionomer/carbon weight ratio when the catalyst was applied to the anode, glucose and KOH concentrations in the fuel solution, and operating temperature and flow rate of the fuel solution. It was found that poly(N-vinyl-2-pyrrolidone)-stabilized Au80Pt20 nanoparticles (mean diameter 1.5 nm) on a carbon (Ketjen Black 600) support function as a highly active anode catalyst for the glucose electrooxidation. The ionomer/carbon weight ratio also greatly affects the cell properties, which was found to be optimal at 0.2. As for the glucose concentration, a maximum cell power was derived at 0.4-0.6 mol dm-3. A high KOH concentration (4.0 mol dm-3) was preferable for deriving the maximum power. The cell power increased with the increasing flow rate of the glucose solution up to 50 cm3 min-1 and leveled off thereafter. At the optimal condition, the maximum power density and corresponding cell voltage of 58.2 mW cm-2 (0.36 V) and 95.7 mW cm-2 (0.34 V) were recorded at 298 and 328 K, respectively.

4.
Sci Rep ; 5: 15136, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26456697

RESUMO

SQAP is a novel and promising anticancer agent that was obtained by structural modifications from a natural compound. SQAP inhibits angiogenesis in vivo resulting in increased hypoxia and reduced tumor volume. In this study, the mechanism by which SQAP modifies the tumor microenvironment was revealed through the application of a T7 phage display screening. This approach identified five SQAP-binding proteins including sterol carrier protein 2, multifunctional enzyme type 2, proteasomal ubiquitin receptor, UV excision repair protein and focal adhesion kinase (FAK). All the interactions were confirmed by surface plasmon resonance analysis. Since FAK plays an important role in cell turnover and angiogenesis, the influence of SQAP on FAK was the principal goal of this study. SQAP decreased FAK phosphorylation and cell migration in human umbilical vein endothelial cells and A549 cancer cells. These findings suggest that inhibition of FAK phosphorylation works as the mechanism for the anti-angiogenesis activity of SQAP.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Pequenas/tratamento farmacológico , Quinase 1 de Adesão Focal/antagonistas & inibidores , Glicolipídeos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Sequência de Aminoácidos , Animais , Antineoplásicos/síntese química , Sítios de Ligação , Carcinoma de Células Pequenas/enzimologia , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/patologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Quinase 1 de Adesão Focal/química , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Glicolipídeos/síntese química , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Biblioteca de Peptídeos , Proteína Multifuncional do Peroxissomo-2/química , Proteína Multifuncional do Peroxissomo-2/genética , Proteína Multifuncional do Peroxissomo-2/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
5.
PLoS One ; 10(9): e0138902, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26402242

RESUMO

Saccharification of cellulose is a promising technique for producing alternative source of energy. However, the efficiency of conversion of cellulose into soluble sugar using any currently available methodology is too low for industrial application. Many additives, such as surfactants, have been shown to enhance the efficiency of cellulose-to-sugar conversion. In this study, we have examined first whether cattle saliva, as an additive, would enhance the cellulase-catalyzed hydrolysis of cellulose, and subsequently elucidated the mechanism by which cattle saliva enhanced this conversion. Although cattle saliva, by itself, did not degrade cellulose, it enhanced the cellulase-catalyzed degradation of cellulose. Thus, the amount of reducing sugar produced increased approximately 2.9-fold by the addition of cattle saliva. We also found that non-enzymatic proteins, which were present in cattle saliva, were responsible for causing the enhancement effect. Third, the mechanism of cattle saliva mediated enhancement of cellulase activity was probably similar to that of the canonical surfactants. Cattle saliva is available in large amounts easily and cheaply, and it can be used without further purification. Thus, cattle saliva could be a promising additive for efficient saccharification of cellulose on an industrial scale.


Assuntos
Celulose/metabolismo , Saliva/metabolismo , Adsorção , Animais , Biomassa , Bovinos , Celulase/metabolismo , Fracionamento Químico , Cristalografia por Raios X , Proteínas/isolamento & purificação
6.
Mol Ther Oncolytics ; 2: 15020, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27119112

RESUMO

"Angiogenic switch off" is one of the ideal therapeutic concepts in the treatment of cancer. However, the specific molecules which can induce "angiogenic switch off" in tumor have not been identified yet. In this study, we focused on von Hippel-Lindau protein (pVHL) in hepatocellular carcinoma (HCC) and investigated the effects of sulfoquinovosyl-acylpropanediol (SQAP), a novel synthetic sulfoglycolipid, for HCC. We examined mutation ratio of VHL gene in HCC using 30 HCC samples and we treated the HCC-implanted mice with SQAP. Thirty clinical samples showed no VHL genetic mutation in HCC. SQAP significantly inhibited tumor growth by inhibiting angiogenesis in a hepatoma mouse model. SQAP induced tumor "angiogenic switch off" by decreasing hypoxia-inducible factor (HIF)-1, 2α protein via pVHL upregulation. pVHL upregulation decreased HIFα protein levels through different multiple mechanisms: (i) increasing pVHL-dependent HIFα protein degradation; (ii) decreasing HIFα synthesis with decrease of NF-κB expression; and (iii) decrease of tumor hypoxia by vascular normalization. We confirmed these antitumor effects of SQAP by the loss-of-function experiments. We found that SQAP directly bound to and inhibited transglutaminase 2. This study provides evidence that upregulation of tumor pVHL is a promising target, which can induce "angiogenic switch off" in HCC.

7.
Planta ; 241(1): 83-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25218793

RESUMO

MAIN CONCLUSION: Enzymatic activities of Oryza sativa expansins, which were heterologously overexpressed in Escherichia coli , were analyzed. Results suggested that expansins promote degradation of cellulose by cellulase in a synergistic manner. Sustainable production of future biofuels is dependent on efficient saccharification of lignocelluloses. Expansins have received a lot of attention as proteins promoting biological degradation of cellulose using cellulase. The expansins are a class of plant cell wall proteins that induce cell wall loosening without hydrolysis. In this study, the expansins from Oryza sativa were classified using phylogenetic analysis and five proteins were selected for functional evaluation. At low cellulose loading, the cellulase in expansin mixtures was up to 2.4 times more active than in mixtures containing only cellulase, but at high cellulose loading the activity of cellulase in expansin mixtures and cellulase only mixtures did not differ. Furthermore, expansin activity was greater in cellulase mixtures compared with cellulase-deficient mixtures. Therefore, the expansins showed significant synergistic activity with cellulase. Expansin may play an important role in efficient saccharification of cellulose.


Assuntos
Celulase/metabolismo , Celulose/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Parede Celular/metabolismo , Celulose/química , Cristalização , Eletroforese em Gel de Poliacrilamida , Hidrólise , Modelos Biológicos , Oryza/genética , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Ligação Proteica , Difração de Raios X
8.
Molecules ; 18(4): 4703-17, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23603952

RESUMO

Nowadays, chemically synthesized proteins and peptides are attractive building blocks and have potential in many important applications as biomaterials. In this review, applications of biomaterials to thermotropic liquid crystals are discussed. The review covers the improvement of the performance of liquid crystal displays using liquid crystal physical gels consisting of a liquid crystal and amino acid-based gelators, and also new functionalization of liquid crystals. Moreover, the influence of DNA, which is one of the more attractive biomaterials, dispersed in thermotropic liquid crystals and its potential use in the liquid crystal industry is described. In addition, we found interesting results during electrooptical measurements of liquid crystals doped with DNA, and explain them from the point of view of biological applications. These recent approaches suggest that these biomaterials may be applicable in the electronic device industry and should be considered as an interesting material with their physical properties having the potential to create or refine an industrial product.


Assuntos
Materiais Biocompatíveis/química , Cristais Líquidos/química , Biotecnologia , DNA/química , Eletrônica , Peptídeos/química
9.
Assay Drug Dev Technol ; 11(3): 206-15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23514038

RESUMO

In small-molecule/protein interaction studies, technical difficulties such as low solubility of small molecules or low abundance of protein samples often restrict the progress of research. Here, we describe a quartz-crystal microbalance (QCM) biosensor-based T7 phage display in combination use with a receptor-ligand contacts (RELIC) bioinformatics server for application in a plant Brz2001/DWARF4 system. Brz2001 is a brassinosteroid biosynthesis inhibitor in the less-soluble triazole series of compounds that targets DWARF4, a cytochrome P450 (Cyp450) monooxygenase containing heme and iron. Using a Brz2001 derivative that has higher solubility in 70% EtOH and forms a self-assembled monolayer on gold electrode, we selected 34 Brz2001-recognizing peptides from a 15-mer T7 phage-displayed random peptide library using a total of four sets of one-cycle biopanning. The RELIC/MOTIF program revealed continuous and discontinuous short motifs conserved within the 34 Brz2001-selected 15-mer peptide sequences, indicating the increase of information content for Brz2001 recognition. Furthermore, an analysis of similarity between the 34 peptides and the amino-acid sequence of DWARF4 using the RELIC/MATCH program generated a similarity plot and a cluster diagram of the amino-acid sequence. Both of these data highlighted an internally located disordered portion of a catalytic site on DWARF4, indicating that this portion is essential for Brz2001 recognition. A similar trend was also noted by an analysis using another 26 Brz2001-selected peptides, and not observed using the 27 gold electrode-recognizing control peptides, demonstrating the reproducibility and specificity of this method. Thus, this affinity-based strategy enables high-throughput detection of the small-molecule-recognizing portion on the target protein, which overcomes technical difficulties such as sample solubility or preparation that occur when conventional methods are used.


Assuntos
Proteínas de Arabidopsis/metabolismo , Bacteriófago T7/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Oxigenases de Função Mista/metabolismo , Triazóis/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/efeitos dos fármacos , Sítios de Ligação , Técnicas Biossensoriais , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , DNA Viral/genética , Indicadores e Reagentes , Dados de Sequência Molecular , Biblioteca de Peptídeos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Software , Ensaio de Placa Viral
10.
Biochem Biophys Res Commun ; 415(1): 193-9, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22033415

RESUMO

While mammalian DNA polymerase ß (Pol ß), which is a member of the Pol X family, play important roles in base excision repair (BER) that efficiently removes DNA base lesions arising from both endogenous and exogenous agents, this protein has been found only a subset of animals. To understand natural evolution of this enzyme, we isolated and characterized Pol ß from jellyfish Aurelia sp.1. (AsPol ß). Despite of phylogenetic distance and environmental differences between jellyfish and mammals, in vitro assays showed biochemical characteristics of AsPol ß were very similar to those of a mammalian counterpart. We also searched two other homologs of mammalian genes that were involved in short patch (sp) BER in the nucleotide sequence database, and found that both of these homologs were encoded in the genomes of a lineage from Cnidarians through mammals and Arthropods. This study suggests that a DNA repair mechanism resembling mammalian sp-BER may be largely limited to a subset of animals. On the basis of our findings and previous reports, we discuss possible evolutional model of Pol ß and the other members of the Pol X family.


Assuntos
DNA Polimerase beta/metabolismo , Reparo do DNA , Cifozoários/enzimologia , Sequência de Aminoácidos , Animais , DNA Ligase Dependente de ATP , DNA Ligases/química , DNA Ligases/genética , DNA Ligases/metabolismo , DNA Polimerase beta/química , DNA Polimerase beta/classificação , DNA Polimerase beta/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X , Proteínas de Xenopus
11.
Anal Biochem ; 419(2): 173-9, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21889485

RESUMO

A foam fractionation apparatus was prepared to aid protein separation at the gas-liquid interface. Using lysozyme as a model protein, we investigated the alteration of enzymatic and optical activities through foaming. The lysozyme transferred to the gaseous nitrogen phase after 5 min of bubbling with no exogenous detergent. The bacteriolytic and optical activities of lysozyme from the foamate were nearly equivalent to those of the original lysozyme. This result indicated that lysozyme did not irreversibly denature during foam fractionation. We then performed protein separation using binary mixtures of lysozyme and α-amylase. When the two proteins were dissolved in bulk solution of pH 10.5, which is close to the isoelectric point (pI) of lysozyme (10.7), selective fractionation of lysozyme from the foam was observed. Indeed, this fractionation was identical to that from a single component solution of lysozyme. Similarly, selective fractionation of α-amylase was achieved in pH 3.0 buffer. Furthermore, circular dichroism (CD) and subsequent model fitting revealed that the protein had a reduced or nearly complete absence of α-helical content, whereas the amount of ß-sheet structure and random coil was elevated in the buffer conditions that promoted protein adsorption. These results indicate that a pH-induced conformational transition might correlate with protein foaming.


Assuntos
Fracionamento Químico/métodos , Muramidase/química , Muramidase/isolamento & purificação , alfa-Amilases/química , alfa-Amilases/isolamento & purificação , Adsorção , Animais , Bacillus subtilis/enzimologia , Galinhas , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Conformação Proteica
12.
PLoS One ; 6(7): e22582, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21818343

RESUMO

Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.


Assuntos
Halogenação , Proteínas/química , Silicatos/química , Adsorção , Silicatos de Alumínio/química , Animais , Bovinos , Precipitação Química , Galinhas , Cristalização , Humanos , Modelos Químicos , Muramidase/química , Fatores de Tempo
13.
PLoS One ; 6(4): e18285, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21559518

RESUMO

BACKGROUND: Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. PRINCIPAL FINDINGS: Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. CONCLUSIONS: We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology.


Assuntos
Adenosina Trifosfatases/biossíntese , Ciclofilinas/metabolismo , Ciclosporina/farmacologia , RNA Polimerases Dirigidas por DNA/metabolismo , Hepacivirus/genética , Imunossupressores/farmacologia , RNA Viral/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/fisiologia , Linhagem Celular Tumoral , DNA Complementar/metabolismo , Humanos , Biblioteca de Peptídeos , Plasmídeos/metabolismo , RNA Helicases , RNA Viral/metabolismo , Proteínas Recombinantes/química , Ressonância de Plasmônio de Superfície , Distribuição Tecidual
14.
Biochem Biophys Res Commun ; 390(1): 32-7, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19766592

RESUMO

Meiosis is a fundamental process in eukaryotes. Homologous chromosomes are paired and recombined during meiotic prophase I, which results in variation among the gametes. However, the mechanism of recombination between the maternal and paternal chromosome is unknown. In this study, we report on the identification of interaction between Coprinus cinereus DNA polymerase mu (CcPol mu) and CcLim15/Dmc1, a meiosis-specific RecA-like protein, during meiosis. Interaction between these two proteins was confirmed using a GST-pull down assay. A two-hybrid assay revealed that the N-terminus of CcPol mu, which includes the BRCT domain, is responsible for binding the C-terminus of CcLim15. Furthermore, co-immunoprecipitation experiments indicate that these two proteins also interact in the crude extract of the meiotic cell. A significant proportion of CcPol mu and CcLim15 is shown to co-localize in nuclei from the leptotene/zygotene stage to the early pachytene stage during meiotic prophase I. Moreover, CcLim15 enhances polymerase activity of CcPol mu early in the reaction. These results suggest that CcPol mu might be recruited by CcLim15 and elongate the D-loop structure during homologous recombination in meiosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Coprinus/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Meiose , Recombinases Rec A/metabolismo , Coprinus/enzimologia , Mapeamento de Interação de Proteínas , Recombinação Genética
15.
FEBS J ; 276(4): 943-63, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19154342

RESUMO

Replication protein A (RPA) complex has been shown, using both in vivo and in vitro approaches, to be required for most aspects of eukaryotic DNA metabolism: replication, repair, telomere maintenance and homologous recombination. Here, we review recent data concerning the function and biological importance of the multi-RPA complex. There are distinct complexes of RPA found in the biological kingdoms, although for a long time only one type of RPA complex was believed to be present in eukaryotes. Each complex probably serves a different role. In higher plants, three distinct large and medium subunits are present, but only one species of the smallest subunit. Each of these protein subunits forms stable complexes with their respective partners. They are paralogs as complex. Humans possess two paralogs and one analog of RPA. The multi-RPA system can be regarded as universal in eukaryotes. Among eukaryotic kingdoms, paralogs, orthologs, analogs and heterologs of many DNA synthesis-related factors, including RPA, are ubiquitous. Convergent evolution seems to be ubiquitous in these processes. Using recent findings, we review the composition and biological functions of RPA complexes.


Assuntos
Ciclo Celular/fisiologia , Reparo do DNA/fisiologia , Proteína de Replicação A/fisiologia , Animais , DNA/metabolismo , Humanos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Proteína de Replicação A/genética
16.
Chromosoma ; 118(1): 127-39, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18841377

RESUMO

Mer3 is an evolutionarily conserved DNA helicase that has crucial roles in meiotic recombination and crossover formation. We have identified the MER3 homolog in Coprinus cinereus (Ccmer3) and show that it is expressed in zygotene and pachytene meiocytes. Immunostaining analysis indicated that CcMer3 was localized on chromosomes at zygotene and pachytene and CcMer3 foci were more frequent on paired than unpaired chromosomes. We generated a C. cinereus mer3 mutant (#1) and found that it showed abnormal meiosis progression and underwent apoptosis after prophase I. Basidiospore production in #1 was reduced to 0.8% of the wild-type level; the spores showed slower germination at 25 degrees C but were similar to the wild type at 37 degrees C. Electron microscopic analysis of chromosome spreads revealed that axial elements were formed in the mutant but that synapsis was defective, resulting in a reduction in spore production. Our results demonstrate that CcMer3 is required for synaptonemal complex formation after axial elements align and is thus essential for homologous synapsis.


Assuntos
Coprinus/genética , Coprinus/metabolismo , DNA Helicases/metabolismo , Genes Fúngicos/fisiologia , Meiose/fisiologia , Complexo Sinaptonêmico/metabolismo , DNA Helicases/genética , Genes Fúngicos/genética , Meiose/genética , Microscopia , Proteínas Recombinantes/metabolismo
17.
FEBS J ; 275(9): 2032-41, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18355319

RESUMO

In eukaryotes, meiosis leads to genetically variable gametes through recombination between homologous chromosomes of maternal and paternal origin. Chromatin organization following meiotic recombination is critical to ensure the correct segregation of homologous chromosomes into gametes. However, the mechanism of chromatin organization after meiotic recombination is unknown. In this study we report that the meiosis-specific recombinase Lim15/Dmc1 interacts with the homologue of the largest subunit of chromatin assembly factor 1 (CAF-1) in the basidiomycete Coprinopsis cinerea (Coprinus cinereus). Using C. cinerea LIM15/DMC1 (CcLIM15) as the bait in a yeast two-hybrid screen, we have isolated the C. cinerea homologue of Cac1, the largest subunit of CAF-1 in Saccharomyces cerevisiae, and named it C. cinerea Cac1-like (CcCac1L). Two-hybrid assays confirmed that CcCac1L binds CcLim15 in vivo. beta-Galactosidase assays revealed that the N-terminus of CcCac1L preferentially interacts with CcLim15. Co-immunoprecipitation experiments showed that these proteins also interact in the crude extract of meiotic cells. Furthermore, we demonstrate that, during meiosis, CcCac1L interacts with proliferating cell nuclear antigen (PCNA), a component of the DNA synthesis machinery recently reported as an interacting partner of Lim15/Dmc1. Taken together, these results suggest a novel role of the CAF-1-PCNA complex in meiotic events. We propose that the CAF-1-PCNA complex modulates chromatin assembly following meiotic recombination.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose , Recombinação Genética , Fator 1 de Modelagem da Cromatina , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Coprinus/enzimologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Modelos Biológicos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Subunidades Proteicas/química , Ressonância de Plasmônio de Superfície , Técnicas do Sistema de Duplo-Híbrido
18.
Chromosoma ; 117(3): 297-302, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18274769

RESUMO

We reported previously that Coprinus cinereus Lim15/Dmc1 (CcLim15), a meiosis-specific recA-like protein, could specifically activate C. cinereus DNA topoisomerase II (CcTopII). In particular, it enhanced the catenation activity of CcTopII in vitro at the meiotic prophase stage (Iwabata K, Koshiyama A, Yamaguchi T, Sugawara H, Hamada NF, Namekawa HS, Ishii S, Ishizaki T, Chiku H, Nara T, Sakaguchi K, Nucleic Acids Res, 33:5809-5818, 2005). In this study, the interaction between CcTopII and CcLim15, especially during catenation, was investigated in detail using atomic force microscopy. We demonstrated earlier that CcLim15 enhanced the catenation activity of CcTopII in a dose-dependent manner. When using two different-sized plasmid rings (5.4 and 3 kbp), which did not have any homologous sequence regions, equal proportions of homologous and heterologous catenanes were produced, suggesting that CcLim15 causes an increase in catenation activity irrespective of the presence of homologous sequences between the rings. We also showed that CcLim15 works as a DNA-condensing agent. Therefore, we speculate that CcLim15 may work as a DNA-condensing factor specific to the zygotene event and that CcTopII is likely to resolve tangles when the chromosomes initiate pairing at multiple sites by CcLim15.


Assuntos
Coprinus/enzimologia , DNA Topoisomerases Tipo II/metabolismo , Proteínas Fúngicas/metabolismo , Homologia de Sequência de Aminoácidos , Catenanos , DNA Fúngico/ultraestrutura , Proteínas Fúngicas/farmacologia , Microscopia de Força Atômica
19.
Chromosoma ; 116(6): 545-56, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17764015

RESUMO

The X family DNA polymerases lambda (CcPollambda) and mu (CcPolmu) were shown to be expressed during meiotic prophase in the basidiomycete, Coprinus cinereus. These two polymerases are the only members of the X family in the C. cinereus genome. The open reading frame of CcPollambda encoded a predicted product of 800 amino acid residues and that of CcPolmicro of 621 amino acid residues. Both CcPollambda and CcPolmicro required Mn(2+) ions for activity, and both were strongly inhibited by dideoxythymidine triphosphate. Unlike their mammalian counterparts, CcPollambda and CcPolmicro had no terminal deoxynucleotidyl transferase activity. Immunostaining analysis revealed that CcPollambda was present at meiotic prophase nuclei in zygotene and pachytene cells, which is the period when homologous chromosomes pair and recombine. CcPolmicro was present in a slightly wider range of cell stages, zygotene to diplotene. In analyses using D-loop recombination intermediate substrates, we found that both CcPollambda and CcPolmicro could promote primer extension of an invading strand in a D-loop structure. Moreover, both polymerases could fully extend the primer in the D-loop substrate, suggesting that D-loop extension is an activity intrinsic to CcPollambda and CcPolmicro. Based on these data, we discuss the possible roles of these polymerases in meiosis.


Assuntos
Coprinus/enzimologia , DNA Polimerase beta/genética , DNA Polimerase Dirigida por DNA/genética , Meiose/genética , Sequência de Aminoácidos , Coprinus/genética , Humanos , Dados de Sequência Molecular , Prófase/genética
20.
FEBS J ; 274(14): 3519-3531, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17608723

RESUMO

In this review, we describe the role of a small ubiquitin-like protein modifier (SUMO)-conjugating protein, Ubc9, in synaptonemal complex formation during meiosis in a basidiomycete, Coprinus cinereus. Because its meiotic cell cycle is long and naturally synchronous, it is suitable for molecular biological, biochemical and genetic studies of meiotic prophase events. In yeast two-hybrid screening using the meiotic-specific cDNA library of C. cinereus, we found that the meiotic RecA homolog CcLim15 interacted with CcUbc9, CcTopII and CcPCNA. Moreover, both TopII and PCNA homologs were known as Ubc9 interactors and the targets of sumoylation. Immunocytochemistry demonstrates that CcUbc9, CcTopII and CcPCNA localize with CcLim15 in meiotic nuclei during leptotene to zygotene when synaptonemal complex is formed and when homologous chromosomes pair. We discuss the relationships between Lim15/Dmc1 (CcLim15), TopII (CcTopII), PCNA (CcPCNA) and CcUbc9, and subsequently, the role of sumoylation in the stages. We speculate that CcLim15 and CcTopII work in cohesion between homologous chromatins initially and then, in the process of the zygotene events, CcUbc9 works with factors including CcLim15 and CcTopII as an inhibitor of ubiquitin-mediated degradation and as a metabolic switch in the meiotic prophase cell cycle. After CcLim15-CcTopII dissociation, CcLim15 remains on the zygotene DNA and recruits CcUbc9, Rad54B, CcUbc9, Swi5-Sfr1, CcUbc9 and then CcPCNA in rotation on the C-terminus. Finally during zygotene, CcPCNA replaces CcLim15 on the DNA and the free-CcLim15 is probably ubiquitinated and disappears. CcPCNA may recruit the polymerase. The idea that CcUbc9 intervenes in every step by protecting CcLim15 and by switching several factors at the C-terminus of CcLim15 is likely. At the boundary of the zygotene and pachytene stages, CcPCNA would be sumoylated. CcUbc9 may also be involved with CcPCNA in the switch from the replicative polymerase being recruited at zygotene to the repair-type DNA polymerases being recruited at pachytene.


Assuntos
Meiose , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...