Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 201(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31235516

RESUMO

Polysaccharides (PS) decorate the surface of dormant endospores (spores). In the model organism for sporulation, Bacillus subtilis, the composition of the spore PS is not known in detail. Here, we have assessed how PS synthesis enzymes produced during the late stages of sporulation affect spore surface properties. Using four methods, bacterial adhesion to hydrocarbons (BATH) assays, India ink staining, transmission electron microscopy (TEM) with ruthenium red staining, and scanning electron microscopy (SEM), we characterized the contributions of four sporulation gene clusters, spsABCDEFGHIJKL, yfnHGF-yfnED, ytdA-ytcABC, and cgeAB-cgeCDE, on the morphology and properties of the crust, the outermost spore layer. Our results show that all mutations in the sps operon result in the production of spores that are more hydrophobic and lack a visible crust, presumably because of reduced PS deposition, while mutations in cgeD and the yfnH-D cluster noticeably expand the PS layer. In addition, yfnH-D mutant spores exhibit a crust with an unusual weblike morphology. The hydrophobic phenotype from sps mutant spores was partially rescued by a second mutation inactivating any gene in the yfnHGF operon. While spsI, yfnH, and ytdA are paralogous genes, all encoding glucose-1-phosphate nucleotidyltransferases, each paralog appears to contribute in a distinct manner to the spore PS. Our data are consistent with the possibility that each gene cluster is responsible for the production of its own respective deoxyhexose. In summary, we found that disruptions to the PS layer modify spore surface hydrophobicity and that there are multiple saccharide synthesis pathways involved in spore surface properties.IMPORTANCE Many bacteria are characterized by their ability to form highly resistant spores. The dormant spore state allows these species to survive even the harshest treatments with antimicrobial agents. Spore surface properties are particularly relevant because they influence spore dispersal in various habitats from natural to human-made environments. The spore surface in Bacillus subtilis (crust) is composed of a combination of proteins and polysaccharides. By inactivating the enzymes responsible for the synthesis of spore polysaccharides, we can assess how spore surface properties such as hydrophobicity are modulated by the addition of specific carbohydrates. Our findings indicate that several sporulation gene clusters are responsible for the assembly and allocation of surface polysaccharides. Similar mechanisms could be modulating the dispersal of infectious spore-forming bacteria.


Assuntos
Bacillus subtilis/fisiologia , Mutação , Óperon , Polissacarídeos/metabolismo , Esporos Bacterianos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glucose/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Hidrocarbonetos/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Família Multigênica , Esporos Bacterianos/genética
2.
PLoS Genet ; 10(10): e1004636, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25299644

RESUMO

Temperate phages infect bacteria by injecting their DNA into bacterial cells, where it becomes incorporated into the host genome as a prophage. In the genome of Bacillus subtilis 168, an active prophage, SPß, is inserted into a polysaccharide synthesis gene, spsM. Here, we show that a rearrangement occurs during sporulation to reconstitute a functional composite spsM gene by precise excision of SPß from the chromosome. SPß excision requires a putative site-specific recombinase, SprA, and an accessory protein, SprB. A minimized SPß, where all the SPß genes were deleted, except sprA and sprB, retained the SPß excision activity during sporulation, demonstrating that sprA and sprB are necessary and sufficient for the excision. While expression of sprA was observed during vegetative growth, sprB was induced during sporulation and upon mitomycin C treatment, which triggers the phage lytic cycle. We also demonstrated that overexpression of sprB (but not of sprA) resulted in SPß prophage excision without triggering the lytic cycle. These results suggest that sprB is the factor that controls the timing of phage excision. Furthermore, we provide evidence that spsM is essential for the addition of polysaccharides to the spore envelope. The presence of polysaccharides on the spore surface renders the spore hydrophilic in water. This property may be beneficial in allowing spores to disperse in natural environments via water flow. A similar rearrangement occurs in Bacillus amyloliquefaciens FZB42, where a SPß-like element is excised during sporulation to reconstitute a polysaccharide synthesis gene, suggesting that this type of gene rearrangement is common in spore-forming bacteria because it can be spread by phage infection.


Assuntos
Fagos Bacilares/genética , Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , Prófagos/genética , Bacillus/genética , Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Viral da Expressão Gênica , Rearranjo Gênico , Mitomicina/farmacologia , Mutação , Esporos Bacterianos/química , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/genética , Esporos Bacterianos/fisiologia
3.
Mol Microbiol ; 90(2): 415-27, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24015831

RESUMO

Temperate phages can integrate their genomes into a specific region of a host chromosome to produce lysogens (prophage). During genome insertion, prophages may interrupt the gene coding sequence. In Bacillus subtilis, the sigma factor gene sigK is interrupted by a 48 kb prophage-like element. sigK is a composite coding sequence from two partial genes during sporulation. For over two decades, however, no further examples of DNA element-mediated gene reconstitution other than sigK have been identified in spore formers. Here we report that the gene for dipicolinic acid (DPA) synthetase ß subunit spoVFB in B. weihenstephanensis KBAB4 is interrupted by a prophage-like element named vfbin. DPA is synthesized in the mother cell and required for maintaining spore dormancy. We found that spoVFB was a composite coding sequence generated in the mother cell via chromosomal rearrangement that excised vfbin. Furthermore, vfbin caused excision after phage-inducer treatment, but vfbin appeared to be defective as a prophage. We also found various spore-forming bacteria in which sporulation-related genes were disrupted by prophage-like DNA elements. These results demonstrate the first example of a similar mechanism that affects a sporulation gene other than sigK and suggest that this prophage-mediated DNA rearrangement is a common phenomenon in spore-forming bacteria.


Assuntos
Bacillus/fisiologia , Rearranjo Gênico , Genes Bacterianos , Oxirredutases/genética , Prófagos/genética , Fator sigma/genética , Esporos Bacterianos/fisiologia , Bacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos , Geobacillus/genética , Geobacillus/fisiologia , Fases de Leitura Aberta , Oxirredutases/metabolismo , Fator sigma/metabolismo , Esporos Bacterianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...