Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202403224, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246101

RESUMO

Triple-stranded helical lanthanide MOFs with CO2 adsorption properties were investigated. Lanthanide MOFs ([Eu0.1Tb0.9(hfa)3(dpa)]n) are composed of lanthanide luminophores (Eu(III) and/or Tb(III) ions), fluorinated antenna ligands (hfa: hexafluoroacetylacetonate), and polyamide-type linker ligands (dpa: 4-(diphenylphosphoryl)-N-(4-(diphenylphosphoryl)phenyl)benzamide). The cylindrical structure was characterized by single-crystal X-ray analysis, thermogravimetric analysis, and gas adsorption measurements. The inner surfaces of the cylindrical channels were covered with the fluorine atoms of the hfa ligands. The emission intensity ratio (IEu / ITb) in [Eu0.1Tb0.9(hfa)3(dpa)]n is affected by the CO2 gas adsorption behavior. The change in IEu / ITb value was caused by the intermolecular interactions between the CO2 gas molecules and the fluorinated ligands, resulting in an electronic structural change of the lowest triplet excited state in the photosensitized hfa ligands.

2.
J Colloid Interface Sci ; 567: 369-378, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32070882

RESUMO

Two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanoplates (CNNP) have become a hot research topic in photocatalysis due to their small thickness and large specific surface area that favors charge transport and catalytic surface reactions. However, the wide application of 2D g-C3N4 nanoplates prepared by ordinary methods suffers from increased band gaps with a poor solar harvesting capability caused by the strong quantum confinement effect and reduced conjugation distance. In this paper, a facile approach of exfoliation and the following fast thermal treatment of the bulk g-C3N4 is proposed to obtain a porous few-layered g-C3N4 with nitrogen defects. Due to the preferable crystal, textural, optical and electronic structures, the as-obtained porous CNNP demonstrated a significantly improved photocatalytic activity towards water splitting than the bulk g-C3N4 and even the 3 nm-thick CNNP obtained by sugar-assisted exfoliation of the bulk g-C3N4. The difference in the enhancement factors between the H2O splitting and organic decomposition has revealed the effect of N defects. This study offers insightful outlooks on the scalable fabrication of a porous few-layered structure with a promoted photocatalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA