Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612157

RESUMO

Many countries banned asbestos due to its toxicity, but considering its colossal use, especially in the 1960s and 1970s, disposing of waste containing asbestos is the current problem. Today, many asbestos disposal technologies are known, but they usually involve colossal investment and operating expenses, and the end- and by-products of these methods negatively impact the environment. This paper identifies a unique modern direction in detoxifying asbestos minerals, which involves using microorganisms and plants and their metabolites. The work comprehensively focuses on the interactions between asbestos and plants, bacteria and fungi, including lichens and, for the first time, yeast. Biological treatment is a prospect for in situ land reclamation and under industrial conditions, which can be a viable alternative to landfilling and an environmentally friendly substitute or supplement to thermal, mechanical, and chemical methods, often characterized by high cost intensity. Plant and microbial metabolism products are part of the green chemistry trend, a central strategic pillar of global industrial and environmental development.

2.
Chemosphere ; 308(Pt 1): 136284, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057351

RESUMO

Biostimulators are compounds that are gaining attention due to their potential to support plant growth, however, less in known about their impact on plant biochemistry. Therefore, the main goal of this comprehensive study was to evaluate the effect of two inorganic biostimulators (titanium, Ti and silicon, Si) and five fungicides (propiconazole, cyproconazole, spiroxamine, tebuconazole, triadimenol) on biochemical and antioxidant status as well as mycotoxin profile in wheat (Triticum aestivum). Moreover, the half-life of fungicides under the influence of biostimulators was evaluated. Titanium caused most efficient mitigation of fungicide-induced toxicity reflected by greater increase of protein (104.80 mg g-1), carbohydrates (43.70 mg g-1), phenolic compounds (1023.18 µg g-1), and peroxidase activity (0.151 U mg-1) compared to treatment with silicon. The application of spiroketalamine and triazole fungicides with silicon decreased the activity of acid phosphatases (35.70 µM h-1 g-1) while inducing amino acid (861.40 µg kg-1) and catalase activity (1.056 U mg-1). Moreover, silicon was most effective in the reduction of mycotoxin contamination in wheat grain (61.17 µg g-1). This study indicated a shortened dissipation of propiconazole, spiroxamine, tebuconazole and triadimenol under the influence of titanium or silicon (DT50 = 1.85-4.82), which can therefore affect the grace period of wheat. The results of this comprehensive investigation demonstrated that titanium and silicon have a beneficial influence on wheat biochemistry and mitigate fungicide toxicity, which makes them widely suitable for optimizing plant health.


Assuntos
Fungicidas Industriais , Micotoxinas , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Carboidratos , Catalase/metabolismo , Fungicidas Industriais/metabolismo , Fungicidas Industriais/toxicidade , Micotoxinas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Silício/metabolismo , Silício/farmacologia , Compostos de Espiro , Titânio/farmacologia , Triazóis/metabolismo , Triazóis/toxicidade , Triticum/metabolismo
3.
Planta ; 255(3): 61, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35141769

RESUMO

MAIN CONCLUSION: Botrytis cinerea and fungicides interacted and influenced selected biochemical compounds. DPPH and glutathione are the first line of defence against biotic/abiotic stress. Plant metabolites are correlated with fungicides level during dissipation. Botrytis cinerea is an etiological agent of gray mould in leafy vegetables and is combated by fungicides. Fluazinam and azoxystrobin are commonly used fungicides, which inhibit oxidative phosphorylation in fungi. In this study, lettuce was (i) inoculated with B. cinerea; (ii) sprayed with azoxystrobin or fluazinam; (iii) inoculated with B. cinerea and sprayed with fungicides. This investigation confirmed that B. cinerea and fungicides affected lettuce's biochemistry and stress status. B. cinerea influenced the behaviour of fungicides reflected by shortened dissipation of azoxystrobin compared to non-inoculated plants, while prolonged degradation of fluazinam. Stress caused by B. cinerea combined with fungicides reduced level of chlorophylls (53.46%) and carotenoids (75.42%), whereas increased phenolic compounds (81%), ascorbate concentrations (32.4%), and catalase activity (116.1%). Abiotic stress caused by fungicides contributed most to the induction of carotenoids (107.68 µg g-1 on dissipation day 3-1). Diphenyl picrylhydrazyl (DPPH) radical scavenging activity and glutathione concentration peaked from the first hour of fungicides dissipation. For the first time correlation between the status of plant metabolites and fungicides during their dissipation was observed. These results indicate that non-enzymatic antioxidants could be the first-line compounds against stress factors, whereas ascorbate and antioxidant enzymes tend to mitigate stress only secondarily. The findings of this study help better understand plant biochemistry under biotic/abiotic stress conditions.


Assuntos
Fungicidas Industriais , Botrytis , Fungicidas Industriais/farmacologia , Lactuca , Fosforilação Oxidativa , Doenças das Plantas
4.
J Hazard Mater ; 393: 122443, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32163800

RESUMO

This is the first large scale study of fate of the glyphosate (GLP) and its metabolites, (AMPA, N-acetyl glyphosate, N-acetyl AMPA, sarcosine and glycine) monitored by LC/MS/MS. The laboratory trials of behavior of GLP in two types of agricultural soil were performed. Soil (S), soil enriched with sewage sludge (S + SL), soil with Pseudomonas fluorescens (S + P) and soil enriched with sewage sludge and P. fluorescens (S + SL + P) was treated with Roundup 360 SL under controlled conditions. The presence of metabolites was depended on the soil type and enrichment with sludge or bacteria. The GLP and its soil metabolites caused increase of microorganisms association in comparison to control. We assumed that P. fluorescens and sewage sludge influence on time of GLP dissipation. Moreover, GLP degradation in presence of P. fluorescens and sewage sludge is carried out in different metabolic pathways compared to control (S + GLP). Furthermore, presence of particular GLP metabolites is related to different metabolic pathways and is connected with P. fluorescens and sewage sludge occurrence in soil. Additionally, P. fluorescens and sewage sludge stimulate enzymatic activity of soils.


Assuntos
Glicina/análogos & derivados , Herbicidas/metabolismo , Pseudomonas fluorescens/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solo/química , Fosfatase Ácida/química , Fosfatase Alcalina/química , Catalase/química , Glicina/metabolismo , Oxirredutases/química , Esgotos/microbiologia , Glifosato
5.
Sci Rep ; 7: 46430, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28406161

RESUMO

In this study we reconstructed the architecture of Bacillus cereus sensu lato population based on ribosomal proteins, and identified a link between the ribosomal proteins' variants and thermal groups (thermotypes) of the bacilli. The in silico phyloproteomic analysis of 55 ribosomal proteins (34 large and 21 small subunit r-proteins) of 421 strains, representing 14 well-established or plausible B. cereus sensu lato species, revealed several ribosomal clusters (r-clusters), which in general were well correlated with the strains' affiliation to phylogenetic/thermal groups I-VII. However, a conformity and possibly a thermal characteristic of certain phylogenetic groups, e.g. the group IV, were not supported by a distribution of the corresponding r-clusters, and consequently neither by the analysis of cold-shock proteins (CSPs) nor by a content of heat shock proteins (HSPs). Furthermore, a preference for isoleucine and serine over valine and alanine in r-proteins along with a lack of HSP16.4 were recognized in non-mesophilic thermotypes. In conclusion, we suggest that the observed divergence in ribosomal proteins may be connected with an adaptation of B. cereus sensu lato members to various thermal niches.


Assuntos
Bacillus cereus/classificação , Proteômica/métodos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Adaptação Fisiológica , Bacillus cereus/genética , Bacillus cereus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Simulação por Computador , Variação Genética , Filogenia , Ribossomos/genética , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...