Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(10): 4378-4383, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35230836

RESUMO

A synthetic protocol was developed for obtaining a single phase of polycrystalline NaAlB14 with strongly connected intergrain boundaries. NaAlB14 has a unique crystal structure with a tunnel-like covalent framework of B that traps monovalent Na and trivalent Al ions. Owing to the atmospheric instability and volatility of Na, the synthesis of polycrystalline NaAlB14 and its physical properties have not been reported yet. This study employed a two-step process to achieve single-phase polycrystalline NaAlB14. As a first step, a mixture of Al and B with excess Al was sintered in the Na vapor atmosphere followed by HCl treatment to remove excess Al as a second step. For obtaining bulk samples with strong grain connection, vacuum or high-pressure (HP) annealing was employed. HP annealing promoted bandgap shrinkage due to the crystal strain and defect levels and suppressed intergranular resistance. As a result, the HP-annealed sample achieved superior transport properties (0.1 kΩ cm at 300 K) to the vacuum-annealed sample (260 kΩ cm). Furthermore, from the viewpoint of its crystal structure and DFT calculations, the most probable site for the defect was suggested to be the Na site.

2.
Adv Mater ; 34(9): e2106754, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34958686

RESUMO

Na-free Si clathrates consisting only of Si cages are an allotrope of diamond-structured Si. This material is promising for various device applications, such as next-generation photovoltaics. The probable technique for synthesizing Na-free Si clathrates is to extract Na+ from the Si cages of Na24 Si136 . Vacuum annealing is presently a well-known conventional and effective approach for extracting Na. However, this study demonstrates that Na+ cannot be extracted from the surface of a single-crystalline type-II metallic Si clathrate (Na24 Si136 ) in areas deeper than 150 µm. Therefore, a novel method is developed to control anisotropic ion diffusion: this is effective for various compounds with a large difference in the bonding strength between their constituent elements, such as Na24 Si136 composed of covalent Si cages and weakly trapped Na+ . By skillfully exploiting the difference in the chemical potentials as a driving force, Na+ is homogeneously extracted regardless of the size of the single crystal while maintaining high crystallinity. Additionally, the proposed point defect model is evaluated via density functional theory, and the migration of Na+ between the Si cages is explained. It is expected that the developed experimental and computational techniques would significantly advance material design for synthesizing thermodynamically metastable materials.

3.
Sci Technol Adv Mater ; 21(1): 849-855, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33536838

RESUMO

Recently, a massive magnetocaloric effect near the liquefaction temperature of hydrogen has been reported in the ferromagnetic material HoB2. Here we investigate the effects of Dy substitution in the magnetocaloric properties of Ho1-x Dy x B2 alloys (x = 0, 0.3, 0.5, 0.7, 1.0). We find that the Curie temperature (T C) gradually increases upon Dy substitution, while the magnitude of the magnetic entropy change |ΔS M| and adiabatic temperature change ΔT ad showed a gradual decrease. On the other hand, due to the presence of successive transitions in these alloys, the peak height of the above magnetocaloric properties tends to be kept in a wide temperature range, leading to a relatively robust figure of merit in a wide temperature span. These alloys could be interesting candidates for magnetic refrigeration in the temperature range of 10-60 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...