Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 41(2): 755-768, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33356393

RESUMO

OBJECTIVE: Vascular calcification is a critical pathology associated with increased cardiovascular event risk, but there are no Food and Drug Administration-approved anticalcific therapies. We hypothesized and validated that an unbiased screening approach would identify novel mediators of human vascular calcification. Approach and Results: We performed an unbiased quantitative proteomics and pathway network analysis that identified increased CROT (carnitine O-octanoyltransferase) in calcifying primary human coronary artery smooth muscle cells (SMCs). Additionally, human carotid artery atherosclerotic plaques contained increased immunoreactive CROT near calcified regions. CROT siRNA reduced fibrocalcific response in calcifying SMCs. In agreement, histidine 327 to alanine point mutation inactivated human CROT fatty acid metabolism enzymatic activity and suppressed SMC calcification. CROT siRNA suppressed type 1 collagen secretion, and restored mitochondrial proteome alterations, and suppressed mitochondrial fragmentation in calcifying SMCs. Lipidomics analysis of SMCs incubated with CROT siRNA revealed increased eicosapentaenoic acid, a vascular calcification inhibitor. CRISPR/Cas9-mediated Crot deficiency in LDL (low-density lipoprotein) receptor-deficient mice reduced aortic and carotid artery calcification without altering bone density or liver and plasma cholesterol and triglyceride concentrations. CONCLUSIONS: CROT is a novel contributing factor in vascular calcification via promoting fatty acid metabolism and mitochondrial dysfunction, as such CROT inhibition has strong potential as an antifibrocalcific therapy.


Assuntos
Aterosclerose/enzimologia , Carnitina Aciltransferases/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Mitocôndrias/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Calcificação Vascular/enzimologia , Adulto , Animais , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Carnitina Aciltransferases/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibrose , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Mitocôndrias/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Osteogênese , Proteoma , Proteômica , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais , Calcificação Vascular/genética , Calcificação Vascular/patologia , Calcificação Vascular/prevenção & controle
2.
PLoS One ; 12(3): e0173628, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28282426

RESUMO

Licochalcones extracted from Glycyrrhiza inflata are known to have a variety of biological properties such as anti-inflammatory, anti-bacterial, and anti-tumor activities, but their action on platelet aggregation has not yet been reported. Therefore, in this study we investigated the effects of licochalcones on platelet aggregation. Collagen and U46619, a thromboxane A2 receptor agonist, caused rabbit platelet aggregation, which was reversed by pretreatment with licochalcones A, C and D in concentration-dependent manners. Among these compounds, licochalcone A caused the most potent inhibitory effect on collagen-induced platelet aggregation. However, the licochalcones showed marginal inhibitory effects on thrombin or ADP-induced platelet aggregation. In addition to rabbit platelets, licochalcone A attenuated collagen-induced aggregation in human platelets. Because licochalcone A also inhibited arachidonic acid-induced platelet aggregation and production of thromboxane A2 induced by collagen in intact platelets, we further examined the direct interaction of licochalcone A with cyclooxygenase (COX)-1. As expected, licochalcone A caused an inhibitory effect on both COX-1 and COX-2 in vitro. Regarding the effect of licochalcone A on COX-1 enzyme reaction kinetics, although licochalcone A showed a stronger inhibition of prostaglandin E2 synthesis induced by lower concentrations of arachidonic acid, Vmax values in the presence or absence of licochalcone A were comparable, suggesting that it competes with arachidonic acid at the same binding site on COX-1. These results suggest that licochalcones inhibit collagen-induced platelet aggregation accompanied by inhibition of COX-1 activity.


Assuntos
Plaquetas/enzimologia , Chalconas , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase , Glycyrrhiza/química , Agregação Plaquetária/efeitos dos fármacos , Animais , Chalconas/química , Chalconas/isolamento & purificação , Chalconas/farmacologia , Colágeno/farmacologia , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/isolamento & purificação , Inibidores de Ciclo-Oxigenase/farmacologia , Masculino , Coelhos
3.
Am J Physiol Endocrinol Metab ; 309(2): E177-90, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26015437

RESUMO

Despite significant reduction of cardiovascular events by statin treatment, substantial residual risk persists, driving emerging needs for the development of new therapies. We identified a novel cholesteryl ester transfer protein (CETP) inhibitor, K-312, that raises HDL and lowers LDL cholesterol levels in animals. K-312 also suppresses hepatocyte expression of proprotein convertase subtilisin/kexin 9 (PCSK9), a molecule that increases LDL cholesterol. We explored the underlying mechanism for the reduction of PCSK9 expression by K-312. K-312 inhibited in vitro human plasma CETP activity (IC50; 0.06 µM). Administration of K-312 to cholesterol-fed New Zealand White rabbits for 18 wk raised HDL cholesterol, decreased LDL cholesterol, and attenuated aortic atherosclerosis. Our search for additional beneficial characteristics of this compound revealed that K-312 decreases PCSK9 expression in human primary hepatocytes and in the human hepatoma cell line HepG2. siRNA silencing of CETP in HepG2 did not compromise the suppression of PCSK9 by K-312, suggesting a mechanism independent of CETP. In HepG2 cells, K-312 treatment decreased the active forms of sterol regulatory element-binding proteins (SREBP-1 and -2) that regulate promoter activity of PCSK9. Chromatin immunoprecipitation assays demonstrated that K-312 decreased the occupancy of SREBP-1 and SREBP-2 on the sterol regulatory element of the PCSK9 promoter. PCSK9 protein levels decreased by K-312 treatment in the circulating blood of cholesterol-fed rabbits, as determined by two independent mass spectrometry approaches, including the recently developed, highly sensitive parallel reaction monitoring method. New CETP inhibitor K-312 decreases LDL cholesterol and PCSK9 levels, serving as a new therapy for dyslipidemia and cardiovascular disease.


Assuntos
Anticolesterolemiantes/farmacologia , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , LDL-Colesterol/metabolismo , Pró-Proteína Convertases/genética , Serina Endopeptidases/genética , Animais , Células Cultivadas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/metabolismo , Coelhos , Ratos , Ratos Sprague-Dawley , Serina Endopeptidases/metabolismo
4.
J Cardiovasc Dev Dis ; 2(2): 31-47, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29371511

RESUMO

In addition to increased differentiation of vascular smooth muscle cells into osteoblast-like phenotypes, the limited accumulation of osteoclasts in atherosclerotic plaques or their dysfunction may participate in potential mechanisms for vascular calcification. N-acetylglucosamine-1-phosphate transferase containing alpha and beta subunits (GNPTAB) is a transmembrane enzyme complex that mediates the vesicular transport of lysosomal hydrolases. GNPTAB may also regulate the biogenesis of lysosomal hydrolases from bone-marrow derived osteoclasts. In this study, the areas surrounding calcification in human atherosclerotic plaques contained high levels of GNPTAB and low levels of lysosomal hydrolases such as cathepsin K (CTSK) and tartrate-resistant acid phosphatase (TRAP), as demonstrated by immunohistochemistry and laser-capture microdissection-assisted mRNA expression analysis. We therefore hypothesized that GNPTAB secretion may suppress the release of CTSK and TRAP by vascular osteoclast-like cells, thus causing their dysfunction and reducing the resorption of calcification. We used human primary macrophages derived from peripheral blood mononuclear cells, an established osteoclast differentiation model. GNPTAB siRNA silencing accelerated the formation of functional osteoclasts as detected by increased secretion of CTSK and TRAP and increased their bone resorption activity as gauged by resorption pits assay. We concluded that high levels of GNPTAB inhibit secretion of lysosomal hydrolases in dysfunctional osteoclasts, thereby affecting their resorption potential in cardiovascular calcification.

5.
J Extracell Vesicles ; 3: 25129, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25491249

RESUMO

Calcifying extracellular vesicles (EVs) released from cells within atherosclerotic plaques have received increased attention for their role in mediating vascular calcification, a major predictor of cardiovascular morbidity and mortality. However, little is known about the difference between this pathologic vesicle population and other EVs that contribute to physiological cellular processes. One major challenge that hinders research into these differences is the inability to selectively isolate calcifying EVs from other vesicle populations. In this study, we hypothesized that the formation of mineral within calcifying EVs would increase the density of the vesicles such that they would pellet at a faster rate during ultracentrifugation. We show that after 10 min of ultracentrifugation at 100,000×g, calcifying EVs are depleted from the conditioned media of calcifying coronary artery smooth muscle cells and are enriched in the pelleted portion. We utilized mass spectrometry to establish functional proteomic differences between the calcifying EVs enriched in the 10 min ultracentrifugation compared to other vesicle populations preferentially pelleted by longer ultracentrifugation times. The procedures established in this study will allow us to enrich the vesicle population of interest and perform advanced proteomic analyses to find subtle differences between calcifying EVs and other vesicle populations that may be translated into therapeutic targets for vascular calcification. Finally, we will show that the differences in ultracentrifugation times required to pellet the vesicle populations can also be used to estimate physical differences between the vesicles.

6.
Phytomedicine ; 17(14): 1082-5, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20637576

RESUMO

Platelet aggregation in the blood vessel causes thrombosis. Therefore, inhibitors of platelet aggregation promise to be preventive or therapeutic agents of various vascular diseases, including myocardial infarction and stroke. In the present study, we found that hericenone B had a strong anti-platelet activity and it might be a novel compound for antithrombotic therapy possessing a novel mechanism. Prior to this study, we examined anti-platelet aggregation activity of ethanol extracts of several species of mushrooms, and found that extract of Hericium erinaceus potently inhibited platelet aggregation induced by collagen. Therefore, we first fractionated the ethanol extract of H. erinaceus to identify the active substances. The anti-platelet activity of each fraction was determined using washed rabbit platelets. As a result, an active component was isolated and identified as hericenone B. Hericenone B selectively inhibited collagen-induced platelet aggregation, but it did not suppress the aggregation induced by U46619 (TXA2 analogue), ADP, thrombin, or adrenaline. Furthermore, hericenone B did not inhibit arachidonic acid- or convulxin (GPVI agonist)-induced platelet aggregation. Therefore, hericenone B was considered to block collagen signaling from integrin α2/ß1 to arachidonic acid release. Moreover, we found that collagen-induced aggregation was inhibited by hericenone B in human platelets, similar to in rabbit platelets.


Assuntos
Basidiomycota/química , Produtos Biológicos/farmacologia , Colágeno/metabolismo , Indóis/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Difosfato de Adenosina/farmacologia , Animais , Ácido Araquidônico , Produtos Biológicos/química , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Venenos de Crotalídeos , Epinefrina/farmacologia , Humanos , Indóis/isolamento & purificação , Lectinas Tipo C , Masculino , Inibidores da Agregação Plaquetária/isolamento & purificação , Coelhos , Transdução de Sinais/efeitos dos fármacos , Trombina/farmacologia , Trombose/prevenção & controle
7.
Biol Pharm Bull ; 32(5): 856-60, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19420754

RESUMO

Kami-shoyo-san (Jia-Wei-Xiao-Yao-San), Toki-shakuyaku-san (Dang-Gui-Shao-Yao-San) and Toki-shigyaku-ka-goshuyu-shokyo-to (Dang-Gui-Si-Ni-Jia-Wu-Zhu-Yu-Sheng-Jiang-Tang) are Kampo (traditional Chinese) medicines which are traditionally and effectively used for the treatment of chilly sensation (Hiesho) in Japan, but the active components and their detailed mechanisms have not yet been clarified. Etiologies of Hiesho include poor peripheral blood circulation and platelet aggregability contributes to peripheral blood circulation; therefore, we investigated the effect of Kampo medicines on platelet aggregation using rabbit platelets in vitro. Collagen and U46619, a thromboxane A(2) receptor agonist, caused rabbit platelet aggregation, which was potently inhibited by pretreatment of platelets with Kami-shoyo-san and Toki-shakuyaku-san in vitro. Toki-shigyaku-ka-goshuyu-shokyo-to, however, did not significantly inhibit collagen- or U46619-induced platelet aggregation. Therefore, we examined the effect on platelet aggregation of two herbal medicines, Atractylodis Lanceae Rhizoma and Poria, both of which are contained in Kami-shoyo-san and Toki-shakuyaku-san but not in Toki-shigyaku-ka-goshuyu-shokyo-to. As the results indicate, Atractylodis Lanceae Rhizoma inhibited platelet aggregation induced by collagen but not by U46619. Poria effectively inhibited U46619-induced platelet aggregation and it partially inhibited collagen-induced platelet aggregation. On the other hand, Atractylodis Lanceae Rhizoma and Poria did not inhibit adrenaline/adenosine diphosphate- or adrenaline/serotonin-induced platelet aggregation. These results suggest the possibility that the inhibition of platelet aggregation by two Kampo medicines, Kami-shoyo-san and Toki-shakuyaku-san, is one of the mechanisms underlying the improvement of Hiesho. Furthermore, Atractylodis Lanceae Rhizoma and Poria are possible herbal medicines for the inhibition of platelet aggregation.


Assuntos
Atractylodes/química , Colágeno/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Medicina Kampo , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Poria/química , Receptores de Tromboxano A2 e Prostaglandina H2/agonistas , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Masculino , Coelhos , Rizoma/química
8.
Eur J Pharmacol ; 570(1-3): 38-42, 2007 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-17618620

RESUMO

Piper longum L. has been used as a crude drug for the treatment of the disorder of peripherally poor blood circulation in Asia. In the present study, we examined the effect of piperlongumine, a constituent of P. longum L., on rabbit platelet aggregation. Piperlongumine concentration-dependently inhibited platelet aggregation induced by thromboxane A(2) receptor agonist U46619, but it only slightly inhibited thrombin-induced one. Piperlongumine also inhibited U46619-induced phosphatidylinositol hydrolysis and the binding of [(3)H]SQ29548 to thromboxane A(2) receptor with a similar concentration-dependency to the aggregation. It is assumed that piperlongumine inhibits platelet aggregation as a thromboxane A(2) receptor antagonist.


Assuntos
Dioxolanos/farmacologia , Compostos Heterocíclicos com 1 Anel/farmacologia , Piper/química , Inibidores da Agregação Plaquetária/farmacologia , Receptores de Tromboxano A2 e Prostaglandina H2/antagonistas & inibidores , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes , Ácidos Graxos Insaturados , Hidrazinas/farmacologia , Masculino , Fosfatidilinositóis/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Coelhos , Receptores de Tromboxano A2 e Prostaglandina H2/agonistas
9.
Biol Pharm Bull ; 30(7): 1221-5, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17603157

RESUMO

Piper longum L. has been used as a crude drug for the treatment of disorders of poor peripheral blood circulation in Asia. However, the detailed mechanism of its action has not been clarified as yet. In the present study, we examined the effects of several extracts of Piper longum L. on rabbit platelet function. Thromboxane A(2) receptor agonist U46619 caused rabbit platelet aggregation, which was potently inhibited by the ethanol or butanol extract of Piper longum L. The ethanol extract inhibited U46619-induced platelet aggregation in a concentration-dependent manner, but only weakly inhibited that induced by thrombin. The maximum response to U46619 was reduced by 100% ethanol extract concentration dependently, suggesting that the inhibitory mode of U46619-induced platelet aggregation by the ethanol extract was non-competitive. The extract also inhibited U46619-induced phosphoinositide hydrolysis with a similar concentration dependency to the platelet aggregation. Furthermore, the extract inhibited binding of [(3)H]SQ29548 to thromboxane A(2) receptor in intact platelets in a concentration-dependent manner. These results suggest that Piper longum L. contains a constituent(s) that inhibits platelet aggregation as a non-competitive thromboxane A(2) receptor antagonist.


Assuntos
Piper , Extratos Vegetais/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Receptores de Tromboxano A2 e Prostaglandina H2/antagonistas & inibidores , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Alcaloides/análise , Animais , Benzodioxóis/análise , Compostos Bicíclicos Heterocíclicos com Pontes , Dioxolanos/análise , Ácidos Graxos Insaturados , Hidrazinas/metabolismo , Masculino , Fosfatidilinositóis/metabolismo , Piper/química , Piperidinas/análise , Alcamidas Poli-Insaturadas/análise , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...