Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Science ; 350(6261): 680-4, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26542571

RESUMO

Anion exchanger 1 (AE1), also known as band 3 or SLC4A1, plays a key role in the removal of carbon dioxide from tissues by facilitating the exchange of chloride and bicarbonate across the plasma membrane of erythrocytes. An isoform of AE1 is also present in the kidney. Specific mutations in human AE1 cause several types of hereditary hemolytic anemias and/or distal renal tubular acidosis. Here we report the crystal structure of the band 3 anion exchanger domain (AE1(CTD)) at 3.5 angstroms. The structure is locked in an outward-facing open conformation by an inhibitor. Comparing this structure with a substrate-bound structure of the uracil transporter UraA in an inward-facing conformation allowed us to identify the anion-binding position in the AE1(CTD), and to propose a possible transport mechanism that could explain why selected mutations lead to disease.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/química , Proteína 1 de Troca de Ânion do Eritrócito/genética , Cristalografia por Raios X , Doença/genética , Proteínas de Escherichia coli/química , Humanos , Proteínas de Membrana Transportadoras/química , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
2.
Methods Mol Biol ; 1305: 281-99, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25910742

RESUMO

The alternative oxidase (AOX) is an integral monotopic membrane protein located on the inner surface of the inner mitochondrial membrane. Branching from the traditional respiratory chain at the quinone pool, AOX is responsible for cyanide-resistant respiration in plants and fungi, heat generation in thermogenic plants, and survival of parasites, such as Trypanosoma brucei, in the human host. A recently solved AOX structure provides insight into its active site, thereby facilitating rational phytopathogenic and antiparasitic drug design. Here, we describe expression of recombinant AOX using two different expression systems. Purification protocols for the production of highly pure and stable AOX protein in sufficient quantities to facilitate further kinetic, biophysical, and structural analyses are also described.


Assuntos
Magnoliopsida/enzimologia , Magnoliopsida/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Oxirredutases/química , Oxirredutases/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Cromatografia em Gel/métodos , Clonagem Molecular/métodos , Cristalização/métodos , Ensaios Enzimáticos/métodos , Escherichia coli/genética , Magnoliopsida/química , Magnoliopsida/metabolismo , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/metabolismo , Oxirredutases/isolamento & purificação , Oxirredutases/metabolismo , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/genética , Solubilidade , Transformação Genética
3.
Proc Natl Acad Sci U S A ; 109(38): 15247-52, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22949654

RESUMO

Bioenergy is efficiently produced in the mitochondria by the respiratory system consisting of complexes I-V. In various organisms, complex I can be replaced by the alternative NADH-quinone oxidoreductase (NDH-2), which catalyzes the transfer of an electron from NADH via FAD to quinone, without proton pumping. The Ndi1 protein from Saccharomyces cerevisiae is a monotopic membrane protein, directed to the matrix. A number of studies have investigated the potential use of Ndi1 as a therapeutic agent against complex I disorders, and the NDH-2 enzymes have emerged as potential therapeutic targets for treatments against the causative agents of malaria and tuberculosis. Here we present the crystal structures of Ndi1 in its substrate-free, NAD(+)- and ubiquinone- (UQ2) complexed states. The structures reveal that Ndi1 is a peripheral membrane protein forming an intimate dimer, in which packing of the monomeric units within the dimer creates an amphiphilic membrane-anchor domain structure. Crucially, the structures of the Ndi1-NAD(+) and Ndi1-UQ2 complexes show overlapping binding sites for the NAD(+) and quinone substrates.


Assuntos
Complexo I de Transporte de Elétrons/química , Lipídeos/química , Proteínas de Saccharomyces cerevisiae/química , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X/métodos , Citoplasma/metabolismo , Dimerização , Elétrons , Escherichia coli/metabolismo , Conformação Molecular , Mutação , Estrutura Terciária de Proteína , Prótons , Quinonas/química , Saccharomyces cerevisiae/metabolismo , Eletricidade Estática , Água/química
4.
J Biol Chem ; 286(11): 9246-56, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21106528

RESUMO

The 57-residue small hydrophilic endoplasmic reticulum-associated protein (SHERP) shows highly specific, stage-regulated expression in the non-replicative vector-transmitted stages of the kinetoplastid parasite, Leishmania major, the causative agent of human cutaneous leishmaniasis. Previous studies have demonstrated that SHERP localizes as a peripheral membrane protein on the cytosolic face of the endoplasmic reticulum and on outer mitochondrial membranes, whereas its high copy number suggests a critical function in vivo. However, the absence of defined domains or identifiable orthologues, together with lack of a clear phenotype in transgenic parasites lacking SHERP, has limited functional understanding of this protein. Here, we use a combination of biophysical and biochemical methods to demonstrate that SHERP can be induced to adopt a globular fold in the presence of anionic lipids or SDS. Cross-linking and binding studies suggest that SHERP has the potential to form a complex with the vacuolar type H(+)-ATPase. Taken together, these results suggest that SHERP may function in modulating cellular processes related to membrane organization and/or acidification during vector transmission of infective Leishmania.


Assuntos
Retículo Endoplasmático/enzimologia , Leishmania major/enzimologia , Dobramento de Proteína , Proteínas de Protozoários/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Retículo Endoplasmático/genética , Leishmania major/genética , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/genética
5.
EMBO J ; 28(23): 3771-9, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19893485

RESUMO

Vacuolar-type ATPases (V-ATPases) exist in various cellular membranes of many organisms to regulate physiological processes by controlling the acidic environment. Here, we have determined the crystal structure of the A(3)B(3) subcomplex of V-ATPase at 2.8 A resolution. The overall construction of the A(3)B(3) subcomplex is significantly different from that of the alpha(3)beta(3) sub-domain in F(o)F(1)-ATP synthase, because of the presence of a protruding 'bulge' domain feature in the catalytic A subunits. The A(3)B(3) subcomplex structure provides the first molecular insight at the catalytic and non-catalytic interfaces, which was not possible in the structures of the separate subunits alone. Specifically, in the non-catalytic interface, the B subunit seems to be incapable of binding ATP, which is a marked difference from the situation indicated by the structure of the F(o)F(1)-ATP synthase. In the catalytic interface, our mutational analysis, on the basis of the A(3)B(3) structure, has highlighted the presence of a cluster composed of key hydrophobic residues, which are essential for ATP hydrolysis by V-ATPases.


Assuntos
Subunidades Proteicas/química , Thermus thermophilus/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , Trifosfato de Adenosina/química , Bacillus/enzimologia , Bacillus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico/genética , Cristalização , Cristalografia por Raios X , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Thermus thermophilus/genética , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
7.
EMBO J ; 24(22): 3974-83, 2005 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-16281059

RESUMO

The crystal structure of subunit F of vacuole-type ATPase/synthase (prokaryotic V-ATPase) was determined to of 2.2 A resolution. The subunit reveals unexpected structural similarity to the response regulator proteins that include the Escherichia coli chemotaxis response regulator CheY. The structure was successfully placed into the low-resolution EM structure of the prokaryotic holo-V-ATPase at a location indicated by the results of crosslinking experiments. The crystal structure, together with the single-molecule analysis using fluorescence resonance energy transfer, showed that the subunit F exhibits two conformations, a 'retracted' form in the absence and an 'extended' form in the presence of ATP. Our results postulated that the subunit F is a regulatory subunit in the V-ATPase.


Assuntos
Proteínas de Bactérias/química , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Thermus thermophilus/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Holoenzimas/química , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Alinhamento de Sequência , ATPases Vacuolares Próton-Translocadoras/genética
8.
Proc Natl Acad Sci U S A ; 101(1): 59-64, 2004 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-14684831

RESUMO

The vacuole-type ATPases (V-ATPases) exist in various intracellular compartments of eukaryotic cells to regulate physiological processes by controlling the acidic environment. The crystal structure of the subunit C of Thermus thermophilus V-ATPase, homologous to eukaryotic subunit d of V-ATPases, has been determined at 1.95-A resolution and located into the holoenzyme complex structure obtained by single particle analysis as suggested by the results of subunit cross-linking experiments. The result shows that V-ATPase is substantially longer than the related F-type ATPase, due to the insertion of subunit C between the V(1) (soluble) and the V(o) (membrane bound) domains. Subunit C, attached to the V(o) domain, seems to have a socket like function in attaching the central-stalk subunits of the V(1) domain. This architecture seems essential for the reversible association/dissociation of the V(1) and the V(o) domains, unique for V-ATPase activity regulation.


Assuntos
ATPases Vacuolares Próton-Translocadoras/química , Sequência de Bases , Reagentes de Ligações Cruzadas , Cristalografia por Raios X , DNA Bacteriano/genética , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Mutagênese Sítio-Dirigida , Subunidades Proteicas , Eletricidade Estática , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...