Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Neural Netw Learn Syst ; 34(9): 5789-5803, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34890339

RESUMO

Gaussian process regression (GPR) is a fundamental model used in machine learning (ML). Due to its accurate prediction with uncertainty and versatility in handling various data structures via kernels, GPR has been successfully used in various applications. However, in GPR, how the features of an input contribute to its prediction cannot be interpreted. Here, we propose GPR with local explanation, which reveals the feature contributions to the prediction of each sample while maintaining the predictive performance of GPR. In the proposed model, both the prediction and explanation for each sample are performed using an easy-to-interpret locally linear model. The weight vector of the locally linear model is assumed to be generated from multivariate Gaussian process priors. The hyperparameters of the proposed models are estimated by maximizing the marginal likelihood. For a new test sample, the proposed model can predict the values of its target variable and weight vector, as well as their uncertainties, in a closed form. Experimental results on various benchmark datasets verify that the proposed model can achieve predictive performance comparable to those of GPR and superior to that of existing interpretable models and can achieve higher interpretability than them, both quantitatively and qualitatively.

2.
PLoS One ; 17(1): e0262397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35085287

RESUMO

Developments in high-throughput microscopy have made it possible to collect huge amounts of cell image data that are difficult to analyse manually. Machine learning (e.g., deep learning) is often employed to automate the extraction of information from these data, such as cell counting, cell type classification and image segmentation. However, the effects of different imaging methods on the accuracy of image processing have not been examined systematically. We studied the effects of different imaging methods on the performance of machine learning-based cell type classifiers. We observed lymphoid-primed multipotential progenitor (LMPP) and pro-B cells using three imaging methods: differential interference contrast (DIC), phase contrast (Ph) and bright-field (BF). We examined the classification performance of convolutional neural networks (CNNs) with each of them and their combinations. CNNs achieved an area under the receiver operating characteristic (ROC) curve (AUC) of ~0.9, which was significantly better than when the classifier used only cell size or cell contour shape as input. However, no significant differences were found between imaging methods and focal positions.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Linfócitos B/citologia , Células Cultivadas , Humanos , Linfócitos/citologia , Aprendizado de Máquina , Microscopia/métodos , Curva ROC , Células-Tronco/citologia
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5481-5487, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892366

RESUMO

This paper proposes a new generative probabilistic model for phonocardiograms (PCGs) that can simultaneously capture oscillatory factors and state transitions in cardiac cycles. Conventionally, PCGs have been modeled in two main aspects. One is a state space model that represents recurrent and frequently appearing state transitions. Another is a factor model that expresses the PCG as a non-stationary signal consisting of multiple oscillations. To model these perspectives in a unified framework, we combine an oscillation decomposition with a state space model. The proposed model can decompose the PCG into cardiac state dependent oscillations by reflecting the mechanism of cardiac sounds generation in an unsupervised manner. In the experiments, our model achieved better accuracy in the state estimation task compared to the empirical mode decomposition method. In addition, our model detected S2 onsets more accurately than the supervised segmentation method when distributions among PCG signals were different.


Assuntos
Ruídos Cardíacos , Algoritmos , Coração , Fonocardiografia , Processamento de Sinais Assistido por Computador
4.
Entropy (Basel) ; 23(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34441133

RESUMO

Langevin dynamics (LD) has been extensively studied theoretically and practically as a basic sampling technique. Recently, the incorporation of non-reversible dynamics into LD is attracting attention because it accelerates the mixing speed of LD. Popular choices for non-reversible dynamics include underdamped Langevin dynamics (ULD), which uses second-order dynamics and perturbations with skew-symmetric matrices. Although ULD has been widely used in practice, the application of skew acceleration is limited although it is expected to show superior performance theoretically. Current work lacks a theoretical understanding of issues that are important to practitioners, including the selection criteria for skew-symmetric matrices, quantitative evaluations of acceleration, and the large memory cost of storing skew matrices. In this study, we theoretically and numerically clarify these problems by analyzing acceleration focusing on how the skew-symmetric matrix perturbs the Hessian matrix of potential functions. We also present a practical algorithm that accelerates the standard LD and ULD, which uses novel memory-efficient skew-symmetric matrices under parallel-chain Monte Carlo settings.

5.
IEEE Trans Pattern Anal Mach Intell ; 38(3): 607-17, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27046500

RESUMO

We propose a method for unsupervised many-to-many object matching from multiple networks, which is the task of finding correspondences between groups of nodes in different networks. For example, the proposed method can discover shared word groups from multi-lingual document-word networks without cross-language alignment information. We assume that multiple networks share groups, and each group has its own interaction pattern with other groups. Using infinite relational models with this assumption, objects in different networks are clustered into common groups depending on their interaction patterns, discovering a matching. The effectiveness of the proposed method is experimentally demonstrated by using synthetic and real relational data sets, which include applications to cross-domain recommendation without shared user/item identifiers and multi-lingual word clustering.

6.
Neural Comput ; 19(9): 2536-56, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17650069

RESUMO

We propose a new method, parametric embedding (PE), that embeds objects with the class structure into a low-dimensional visualization space. PE takes as input a set of class conditional probabilities for given data points and tries to preserve the structure in an embedding space by minimizing a sum of Kullback-Leibler divergences, under the assumption that samples are generated by a gaussian mixture with equal covariances in the embedding space. PE has many potential uses depending on the source of the input data, providing insight into the classifier's behavior in supervised, semisupervised, and unsupervised settings. The PE algorithm has a computational advantage over conventional embedding methods based on pairwise object relations since its complexity scales with the product of the number of objects and the number of classes. We demonstrate PE by visualizing supervised categorization of Web pages, semisupervised categorization of digits, and the relations of words and latent topics found by an unsupervised algorithm, latent Dirichlet allocation.


Assuntos
Algoritmos , Inteligência Artificial , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...