Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Periodontol ; 95(3): 256-267, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37492992

RESUMO

BACKGROUND: New cementum forms from existing cementum during periodontal tissue regeneration, indicating that cementoblasts may interact with progenitor cells in the periodontal ligament to enhance cementogenesis. However, the molecular mechanisms of this process are currently unknown. This study aims to clarify the role of cell-cell interactions between cementoblasts and periodontal ligament cells in differentiation into cementoblasts. METHODS: To analyze the role of human cementoblast-like cells (HCEMs) on human periodontal ligament cells (HPDLs), we mixed cell suspensions of enhanced green fluorescent protein-tagged HPDLs and HCEMs, and then seeded and cultured them in single wells (direct co-cultures). We sorted co-cultured HPDLs and analyzed their characteristics, including the expression of cementum-related genes. In addition, we cultured HPDLs and HCEMs in a non-contact environment using a culture system composed of an upper insert and a lower well separated by a semi-permeable membrane (indirect co-cultures), and similar analysis was performed. Gene expression of integrin-binding sialoprotein (IBSP) in cementoblasts was confirmed in mouse periodontal tissues. We also investigated the effect of Wingless-type (Wnt) signaling on the differentiation of HPDLs into cementoblasts. RESULTS: Direct co-culture of HPDLs with HCEMs significantly upregulated the expression of cementoblast-related genes in HPDLs, whereas indirect co-culture exerted no effect. Wnt3A stimulation significantly upregulated IBSP expression in HPDLs, whereas inhibition of canonical Wnt signaling suppressed the effects of co-culture. CONCLUSION: Our results suggest that direct cell interactions with cementoblasts promote periodontal ligament cell differentiation into cementoblasts. Juxtacrine signaling via the canonical Wnt pathway plays a role in this interaction.


Assuntos
Cemento Dentário , Ligamento Periodontal , Camundongos , Humanos , Animais , Cementogênese , Periodonto , Transdução de Sinais , Diferenciação Celular , Sialoproteína de Ligação à Integrina/metabolismo , Sialoproteína de Ligação à Integrina/farmacologia
2.
Int J Mol Sci ; 24(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37958972

RESUMO

Periodontal ligament-associated protein 1 (PLAP-1), also known as Asporin, is an extracellular matrix protein expressed in the periodontal ligament and plays a crucial role in periodontal tissue homeostasis. Our previous research demonstrated that PLAP-1 may inhibit TLR2/4-mediated inflammatory responses, thereby exerting a protective function against periodontitis. However, the precise roles of PLAP-1 in the periodontal ligament (PDL) and its relationship to periodontitis have not been fully explored. In this study, we employed PLAP-1 knockout mice to investigate its roles and contributions to PDL tissue and function in a ligature-induced periodontitis model. Mandibular bone samples were collected from 10-week-old male C57BL/6 (WT) and PLAP-1 knockout (KO) mice. These samples were analyzed through micro-computed tomography (µCT) scanning, hematoxylin and eosin (HE) staining, picrosirius red staining, and fluorescence immunostaining using antibodies targeting extracellular matrix proteins. Additionally, the structure of the PDL collagen fibrils was examined using transmission electron microscopy (TEM). We also conducted tooth extraction and ligature-induced periodontitis models using both wild-type and PLAP-1 KO mice. PLAP-1 KO mice did not exhibit any changes in alveolar bone resorption up to the age of 10 weeks, but they did display an enlarged PDL space, as confirmed by µCT and histological analyses. Fluorescence immunostaining revealed increased expression of extracellular matrix proteins, including Col3, BGN, and DCN, in the PDL tissues of PLAP-1 KO mice. TEM analysis demonstrated an increase in collagen diameter within the PDL of PLAP-1 KO mice. In line with these findings, the maximum stress required for tooth extraction was significantly lower in PLAP-1 KO mice in the tooth extraction model compared to WT mice (13.89 N ± 1.34 and 16.51 N ± 1.31, respectively). In the ligature-induced periodontitis model, PLAP-1 knockout resulted in highly severe alveolar bone resorption, with a higher number of collagen fiber bundle tears and significantly more osteoclasts in the periodontium. Our results demonstrate that mice lacking PLAP-1/Asporin show alteration of periodontal ligament structures and acceleration of bone loss in periodontitis. This underscores the significant role of PLAP-1 in maintaining collagen fibrils in the PDL and suggests the potential of PLAP-1 as a therapeutic target for periodontal diseases.


Assuntos
Perda do Osso Alveolar , Periodontite , Animais , Masculino , Camundongos , Aceleração , Perda do Osso Alveolar/patologia , Colágeno/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligamento Periodontal , Periodontite/genética , Periodontite/metabolismo , Microtomografia por Raio-X
3.
Cell Transplant ; 32: 9636897231198296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37710973

RESUMO

We have developed an autologous transplantation method using adipose tissue-derived multi-lineage progenitor cells (ADMPCs) as a method of periodontal tissue regeneration that can be adapted to severe periodontal disease. Our previous clinical study confirmed the safety of autologous transplantation of ADMPCs and demonstrated its usefulness in the treatment of severe periodontal disease. However, in the same clinical study, we found that the fibrin gel used as the scaffold material might have caused gingival recession and impaired tissue regeneration in some patients. Carbonate apatite has a high space-making capacity and has been approved in Japan for periodontal tissue regeneration. In this study, we selected carbonate apatite as a candidate scaffold material for ADMPCs and conducted an in vitro examination of its effect on the cellular function of ADMPCs. We further performed autologous ADMPC transplantation with carbonate apatite as the scaffold material in a model of one-wall bone defects in beagles and then analyzed the effect on periodontal tissue regeneration. The findings showed that carbonate apatite did not affect the cell morphology of ADMPCs and that it promoted proliferation. Moreover, no effect on secretor factor transcription was found. The results of the in vivo analysis confirmed the space-making capacity of carbonate apatite, and the acquisition of significant new attachment was observed in the group involving ADMPC transplantation with carbonate apatite compared with the group involving carbonate apatite application alone. Our results demonstrate the usefulness of carbonate apatite as a scaffold material for ADMPC transplantation.


Assuntos
Regeneração Óssea , Doenças Periodontais , Humanos , Animais , Cães , Células-Tronco , Tecido Adiposo , Transplante Autólogo , Doenças Periodontais/terapia , Regeneração Tecidual Guiada Periodontal/métodos
4.
Comput Struct Biotechnol J ; 21: 506-518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36618988

RESUMO

Melanins are the main pigments found in mammals. Their synthesis and transfer to keratinocytes have been widely investigated for many years. However, analysis has been mainly carried out using fixed rather than live cells. In this study, we have analysed the melanosomes in living mammalian cells using newly developed scanning electron-assisted dielectric microscopy (SE-ADM). The melanosomes in human melanoma MNT-1 cells were observed as clear black particles in SE-ADM. The main structure of melanosomes was toroidal while that of normal melanocytes was ellipsoidal. In tyrosinase knockout MNT-1 cells, not only the black particles in the SE-ADM images but also the Raman shift of melanin peaks completely disappeared suggesting that the black particles were really melanosomes. We developed a deep neural network (DNN) system to automatically detect melanosomes in cells and analysed their diameter and roundness. In terms of melanosome morphology, the diameter of melanosomes in melanoma cells did not change while that in normal melanocytes increased during culture. The established DNN analysis system with SE-ADM can be used for other particles, e.g. exosomes, lysosomes, and other biological particles.

5.
Development ; 149(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36245218

RESUMO

Periodontal tissue supports teeth in the alveolar bone socket via fibrous attachment of the periodontal ligament (PDL). The PDL contains periodontal fibroblasts and stem/progenitor cells, collectively known as PDL cells (PDLCs), on top of osteoblasts and cementoblasts on the surface of alveolar bone and cementum, respectively. However, the characteristics and lineage hierarchy of each cell type remain poorly defined. This study identified periodontal ligament associated protein-1 (Plap-1) as a PDL-specific extracellular matrix protein. We generated knock-in mice expressing CreERT2 and GFP specifically in Plap-1-positive PDLCs. Genetic lineage tracing confirmed the long-standing hypothesis that PDLCs differentiate into osteoblasts and cementoblasts. A PDL single-cell atlas defined cementoblasts and osteoblasts as Plap-1-Ibsp+Sparcl1+ and Plap-1-Ibsp+Col11a2+, respectively. Other populations, such as Nes+ mural cells, S100B+ Schwann cells, and other non-stromal cells, were also identified. RNA velocity analysis suggested that a Plap-1highLy6a+ cell population was the source of PDLCs. Lineage tracing of Plap-1+ PDLCs during periodontal injury showed periodontal tissue regeneration by PDLCs. Our study defines diverse cell populations in PDL and clarifies the role of PDLCs in periodontal tissue homeostasis and repair.


Assuntos
Ligamento Periodontal , Transcriptoma , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular/genética , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Osteoblastos , RNA/metabolismo
6.
Sci Rep ; 12(1): 11893, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831375

RESUMO

The new 2018 classification of periodontal diseases is reported to be related to tooth loss due to periodontal disease (TLPD) during supportive periodontal therapy (SPT). However, few reports have evaluated this relationship for Asians or have analyzed the association of the new classification and TLPD by distinguishing between active periodontal therapy (APT) and SPT. In this study, we retrospectively applied the new classification to 607 Japanese periodontitis patients and examined the relationship between the new classification and annual TLPD rates per patient during the respective periods. TLPD rates were higher in patients in stage IV and/or grade C during both APT and SPT. TLPD during SPT was not associated with the presence or absence of TLPD during APT. Multivariate analysis revealed that stage IV and grade C as independent variables were significantly associated with the number of instances of TLPD not only during the total treatment period, but also during APT or SPT. Our results suggest that the new classification has a significantly strong association with TLPD during both APT and SPT, and that patients diagnosed with stage IV and/or grade C periodontitis had a higher risk of TLPD during both periods.


Assuntos
Doenças Periodontais , Periodontite , Perda de Dente , Humanos , Periodontite/complicações , Periodontite/terapia , Estudos Retrospectivos
7.
Sci Rep ; 12(1): 8126, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581234

RESUMO

Periodontitis is a chronic inflammatory disease that destroys tooth-supporting periodontal tissue. Current periodontal regenerative therapies have unsatisfactory efficacy; therefore, periodontal tissue engineering might be established by developing new cell-based therapies. In this study, we evaluated the safety and efficacy of adipose tissue-derived multi-lineage progenitor cells (ADMPC) autologous transplantation for periodontal tissue regeneration in humans. We conducted an open-label, single-arm exploratory phase I clinical study in which 12 periodontitis patients were transplanted with autologous ADMPCs isolated from subcutaneous adipose tissue. Each patient underwent flap surgery during which autologous ADMPCs were transplanted into the bone defect with a fibrin carrier material. Up to 36 weeks after transplantation, we performed a variety of clinical examinations including periodontal tissue inspection and standardized dental radiographic analysis. A 36-week follow-up demonstrated no severe transplantation-related adverse events in any cases. ADMPC transplantation reduced the probing pocket depth, improved the clinical attachment level, and induced neogenesis of alveolar bone. Therapeutic efficiency was observed in 2- or 3-walled vertical bone defects as well as more severe periodontal bone defects. These results suggest that autologous ADMPC transplantation might be an applicable therapy for severe periodontitis by inducing periodontal regeneration.


Assuntos
Perda do Osso Alveolar , Periodontite , Tecido Adiposo/cirurgia , Perda do Osso Alveolar/cirurgia , Regeneração Óssea , Seguimentos , Regeneração Tecidual Guiada Periodontal/métodos , Humanos , Periodontite/cirurgia , Células-Tronco , Transplante Autólogo
8.
Jpn Dent Sci Rev ; 58: 172-178, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35607404

RESUMO

Periodontal tissue stem cells, which play a crucial role in maintaining the homeostasis of periodontal tissues, are found in the periodontal ligament (PDL). These cells have long been referred to as mesenchymal stem/stromal cells (MSCs), and their clinical applications have been extensively studied. However, tissue stem cells in the PDL have not been thoroughly investigated, and they may be different from MSCs. Recent advances in stem cell biology, such as genetic lineage tracing, identification of label-retaining cells, and single-cell transcriptome analysis, have made it possible to analyze tissue stem cells in the PDL in vivo. In this review, we summarize recent findings on these stem cell populations in PDL and discuss future research directions toward developing periodontal regenerative therapy.

9.
J Periodontal Res ; 57(3): 470-478, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35138637

RESUMO

OBJECTIVE: To investigate the mutual regulation of hypoxia-inducible factor (HIF)-1α activity and periodontal ligament-associated protein-1 (PLAP-1) expression in human periodontal ligament cells (HPDLs). BACKGROUND: Cellular responses to hypoxia regulate various biological events (e.g., inflammation and tissue regeneration) through activation of HIF-1α. PLAP-1, an extracellular matrix protein preferentially expressed in the periodontal ligament, plays important roles in the functions of HPDLs. Although PLAP-1 expression has been demonstrated in hypoxic regions, the involvement of PLAP-1 in responses to hypoxia has not been revealed. METHODS: HPDLs were cultured under normoxic (20% O2 ) or hypoxic (1% O2 ) conditions with or without deferoxamine mesylate (chemical hypoxia inducer) or chetomin (HIF signaling inhibitor). Expression levels of PLAP-1 and HIF-1α were examined by real-time reverse transcription-polymerase chain reaction and western blot analysis. Luciferase reporter assays of HIF-1α activity were performed using 293T cells stably transfected with a hypoxia response element (HRE)-containing luciferase vector in the presence or absence of recombinant PLAP-1 or PLAP-1 gene transfection. RESULTS: Cultivation under hypoxic conditions elevated the gene and protein expression levels of PLAP-1 in HPDLs. Deferoxamine mesylate treatment also enhanced PLAP-1 expression in HPDLs. Hypoxia-induced PLAP-1 expression was significantly suppressed in the presence of chetomin. PLAP-1-suppressed HPDLs showed increased HIF-1α accumulation in the nucleus during culture under hypoxic conditions, but not in the presence of recombinant PLAP-1. In the presence of recombinant PLAP-1, hypoxia-induced HRE activity of 293T cells was significantly suppressed in a dose-dependent manner. Transfection of the PLAP-1 gene resulted in a significant reduction of HRE activity during culture under hypoxic conditions. CONCLUSION: PLAP-1 expression is upregulated under hypoxic conditions through HIF-1α activation. Moreover, hypoxia-induced PLAP-1 expression regulates HIF-1α signaling.


Assuntos
Desferroxamina , Proteínas da Matriz Extracelular/metabolismo , Hipóxia , Western Blotting , Hipóxia Celular/fisiologia , Desferroxamina/farmacologia , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Luciferases/metabolismo , Transfecção
10.
Sci Rep ; 11(1): 14436, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262126

RESUMO

Periodontal disease is a chronic inflammatory condition that affects various peripheral organs. The periodontal inflamed surface area (PISA) quantifies periodontitis severity and the spread of inflammatory wounds. This study aimed to investigate the association between PISA and high-sensitivity C-reactive protein (hs-CRP), a systemic inflammation marker. This study included 250 community-dwelling septuagenarians (69-71 years). We collected information on their medical (e.g., diabetes and dyslipidemia) and dental examinations (e.g., measurement of the probing pocket depth). Generalized linear model analysis was used to explore the association between PISA and hs-CRP levels. There was a significant difference in hs-CRP levels between groups with PISA ≥ 500 and < 500 (p = 0.017). Moreover, the generalized linear model analysis revealed a significant association between PISA and hs-CRP levels (risk ratio = 1.77; p = 0.033) even after adjusting other factors. Further, we found a correlation between PISA and hs-CRP (Spearman's rank correlation coefficient, rs = 0.181; p = 0.023). Our findings suggest that PISA is an effective index for estimating the effect of periodontitis on the whole body, enabling medical-dental cooperation.


Assuntos
Proteína C-Reativa , Estudos Transversais , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Periodontite
11.
Sci Rep ; 11(1): 7514, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824390

RESUMO

Periodontal ligament (PDL) possesses a stem/progenitor population to maintain the homeostasis of periodontal tissue. However, transcription factors that regulate this population have not yet been identified. Thus, we aimed to identify a molecule related to the osteogenic differentiation of PDL progenitors using a single cell-based strategy in this study. We first devised a new protocol to isolate PDL cells from the surface of adult murine molars and established 35 new single cell-derived clones from the PDL explant. Among these clones, six clones with high (high clones, n = 3) and low (low clones, n = 3) osteogenic potential were selected. Despite a clear difference in the osteogenic potential of these clones, no significant differences in their cell morphology, progenitor cell marker expression, alkaline phosphatase activity, proliferation rate, and differentiation-related gene and protein expression were observed. RNA-seq analysis of these clones revealed that Z-DNA binding protein-1 (Zbp1) was significantly expressed in the high osteogenic clones, indicating that Zbp1 could be a possible marker and regulator of the osteogenic differentiation of PDL progenitor cells. Zbp1-positive cells were distributed sparsely throughout the PDL. In vitro Zbp1 expression in the PDL clones remained at a high level during osteogenic differentiation. The CRISPR/Cas9 mediated Zbp1 knockout in the high clones resulted in a delay in cell differentiation. On the other hand, Zbp1 overexpression in the low clones promoted cell differentiation. These findings suggested that Zbp1 marked the PDL progenitors with high osteogenic potential and promoted their osteogenic differentiation. Clarifying the mechanism of differentiation of PDL cells by Zbp1 and other factors in future studies will facilitate a better understanding of periodontal tissue homeostasis and repair, possibly leading to the development of novel therapeutic measures.


Assuntos
Osteogênese/genética , Ligamento Periodontal/crescimento & desenvolvimento , Periodonto/crescimento & desenvolvimento , Proteínas de Ligação a RNA/genética , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Células Clonais/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , RNA-Seq , Células-Tronco/citologia
12.
J Periodontol ; 92(11): 1635-1645, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33660864

RESUMO

BACKGROUND: Cellular responses to hypoxia regulate various biological events, including angiogenesis and extracellular matrix metabolism. Collagen is a major component of the extracellular matrix in periodontal tissues and its coordinated production is essential for tissue homeostasis. In this study, we investigated the effects of hypoxia on collagen production in human gingival fibroblasts (HGFs) and human periodontal ligament cells (HPDLs). METHODS: HGFs and HPDLs were cultured under either normoxic (20% O2 ) or hypoxic (1% O2 ) conditions. Nuclear expression of hypoxia-inducible factor-1α (HIF-1α) was determined by western blotting. Peri-cellular expression of type I collagen was examined by immunocytochemistry analysis. Synthesis of type I collagen was evaluated by measuring the concentration of procollagen type I C-peptide (PIP) in culture supernatant using enzyme-linked immunosorbent assay. Expression of collagen hydroxylase enzymes prolyl 4-hydroxylase alpha polypeptide 1 (P4HA1) and 2-oxoglutarate 5-dioxygenase 2 (PLOD2) was determined by RT-qPCR and western blotting. The roles of these enzymes were analyzed using siRNA transfection. RESULTS: Cultivation under hypoxic conditions stimulated type I collagen production via HIF-1α in both cell types. Interestingly, hypoxic conditions did not affect collagen 1a1 or 1a2 gene expression but upregulated that of P4HA1 and PLOD2. Additionally, suppressing P4HA1 significantly decreased the levels of hypoxia-induced procollagen type I C-peptide, a product of stable triple helical collagen, in the supernatant. In contrast, PLOD2 suppression decreased cross-linked collagen expression in the pericellular region. CONCLUSION: Our results suggest that hypoxia activates collagen synthesis in HGFs and HPDLs by upregulating hydroxylases P4HA1 and PLOD2 in an HIF-1α-dependent manner.


Assuntos
Fibroblastos , Ligamento Periodontal , Hipóxia Celular , Células Cultivadas , Colágeno , Humanos , Hidroxilação , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia
13.
Sci Rep ; 11(1): 4970, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654143

RESUMO

Adipose tissue fibrosis with chronic inflammation is a hallmark of obesity-related metabolic disorders, and the role of proteoglycans in developing adipose tissue fibrosis is of interest. Periodontal disease is associated with obesity; however, the underlying molecular mechanisms remain unclear. Here we investigated the roles of periodontal ligament associated protein-1 (PLAP-1)/asporin, a proteoglycan preferentially and highly expressed in the periodontal ligament, in obesity-related adipose tissue dysfunction and adipocyte differentiation. It was found that PLAP-1 is also highly expressed in white adipose tissues. Plap-1 knock-out mice counteracted obesity and alveolar bone resorption induced by a high-fat diet. Plap-1 knock-down in 3T3-L1 cells resulted in less lipid accumulation, and recombinant PLAP-1 enhanced lipid accumulation in 3T3-L1 cells. In addition, it was found that primary preadipocytes isolated from Plap-1 knock-out mice showed lesser lipid accumulation than the wild-type (WT) mice. Furthermore, the stromal vascular fraction of Plap-1 knock-out mice showed different extracellular matrix gene expression patterns compared to WT. These findings demonstrate that PLAP-1 enhances adipogenesis and could be a key molecule in understanding the association between periodontal disease and obesity-related metabolic disorders.


Assuntos
Tecido Adiposo/metabolismo , Perda do Osso Alveolar , Dieta Hiperlipídica/efeitos adversos , Proteínas da Matriz Extracelular/deficiência , Doenças Metabólicas , Células 3T3-L1 , Perda do Osso Alveolar/induzido quimicamente , Perda do Osso Alveolar/genética , Perda do Osso Alveolar/metabolismo , Animais , Proteínas da Matriz Extracelular/metabolismo , Doenças Metabólicas/induzido quimicamente , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Knockout
14.
Sci Rep ; 11(1): 228, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420286

RESUMO

PM2.5 has been correlated with risk factors for various diseases and infections. It promotes tissue injury by direct effects of particle components. However, effects of PM2.5 on cells have not been fully investigated. Recently, we developed a novel imaging technology, scanning electron-assisted dielectric-impedance microscopy (SE-ADM), which enables observation of various biological specimens in aqueous solution. In this study, we successfully observed PM2.5 incorporated into living mammalian cells in culture media. Our system directly revealed the process of PM2.5 aggregation in the cells at a nanometre resolution. Further, we found that the PM2.5 aggregates in the intact cells were surrounded by intracellular membrane-like structures of low-density in the SE-ADM images. Moreover, the PM2.5 aggregates were shown by confocal Raman microscopy to be located inside the cells rather than on the cell surface. We expect our method to be applicable to the observation of various nanoparticles inside cells in culture media.


Assuntos
Microscopia Eletrônica de Varredura , Nanopartículas/química , Nanopartículas/metabolismo , Tamanho da Partícula , Material Particulado/química , Material Particulado/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Humanos
15.
Odontology ; 109(2): 506-513, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33150559

RESUMO

Periodontal disease and arteriosclerotic disease are greatly affected by aging. In this study, the association of conventional risk factors and periodontal disease with atherosclerosis was longitudinally examined in Japanese older adults. Subjects in this study were 490 community-dwelling septuagenarians (69-71 years) randomly recruited from the Basic Resident Registry of urban or rural areas in Japan. At the baseline examination, all subjects underwent socioeconomic and medical interviews; medical examinations, including examinations for carotid atherosclerosis, hypertension, diabetes mellitus, and dyslipidemia; and conventional dental examinations, including a tooth count and measurement of probing pocket depth (PPD). After 3 years, 182 septuagenarians who had no atherosclerosis at the baseline examination were registered and received the same examination as at the baseline. In the re-examination conducted 3 years after the baseline survey, 131 (72.0%) of the 182 participants who had no atherosclerosis at the baseline examination were diagnosed with carotid atherosclerosis. Adjusting and analyzing the mutual relationships of the conventional risk factors for atherosclerosis by multiple logistic regression analysis for the 171 septuagenarians with a full set of data, the proportion of teeth with PPD ≥ 4 mm was independently related to the prevalence of atherosclerosis (odds ratio: 1.029, P < 0.022). This longitudinal study of Japanese older adults suggests that periodontal disease is associated with the onset/progression of atherosclerosis. Maintaining a healthy periodontal condition may be an important factor in preventing the development and progression of atherosclerosis.


Assuntos
Aterosclerose , Doenças Periodontais , Idoso , Aterosclerose/epidemiologia , Humanos , Japão/epidemiologia , Estudos Longitudinais , Doenças Periodontais/complicações , Doenças Periodontais/epidemiologia , Fatores de Risco
16.
Sci Adv ; 5(7): eaax0672, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31281900

RESUMO

Mineralization is the most fundamental process in vertebrates. It is predominantly mediated by osteoblasts, which secrete mineral precursors, most likely through matrix vesicles (MVs). These vesicular structures are calcium and phosphate rich and contain organic material such as acidic proteins. However, it remains largely unknown how intracellular MVs are transported and secreted. Here, we use scanning electron-assisted dielectric microscopy and super-resolution microscopy for assessing live osteoblasts in mineralizing conditions at a nanolevel resolution. We found that the calcium-containing vesicles were multivesicular bodies containing MVs. They were transported via lysosome and secreted by exocytosis. Thus, we present proof that the lysosome transports amorphous calcium phosphate within mineralizing osteoblasts.


Assuntos
Calcificação Fisiológica , Cálcio/metabolismo , Lisossomos/metabolismo , Osteoblastos/metabolismo , Vesículas Secretórias/metabolismo , Animais , Linhagem Celular , Camundongos , Osteoblastos/citologia
17.
BMC Bioinformatics ; 16 Suppl 13: S10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26423047

RESUMO

BACKGROUND: Adapter trimming and removal of duplicate reads are common practices in next-generation sequencing pipelines. Sequencing reads ambiguously mapped to repetitive and low complexity regions can also be problematic for accurate assessment of the biological signal, yet their impact on sequencing data has not received much attention. We investigate how trimming the adapters, removing duplicates, and filtering out reads overlapping low complexity regions influence the significance of biological signal in RNA- and ChIP-seq experiments. METHODS: We assessed the effect of data processing steps on the alignment statistics and the functional enrichment analysis results of RNA- and ChIP-seq data. We compared differentially processed RNA-seq data with matching microarray data on the same patient samples to determine whether changes in pre-processing improved correlation between the two. We have developed a simple tool to remove low complexity regions, RepeatSoaker, available at https://github.com/mdozmorov/RepeatSoaker, and tested its effect on the alignment statistics and the results of the enrichment analyses. RESULTS: Both adapter trimming and duplicate removal moderately improved the strength of biological signals in RNA-seq and ChIP-seq data. Aggressive filtering of reads overlapping with low complexity regions, as defined by RepeatMasker, further improved the strength of biological signals, and the correlation between RNA-seq and microarray gene expression data. CONCLUSIONS: Adapter trimming and duplicates removal, coupled with filtering out reads overlapping low complexity regions, is shown to increase the quality and reliability of detecting biological signals in RNA-seq and ChIP-seq data.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/genética , Análise de Sequência de RNA/métodos , Humanos
18.
Biochem Biophys Res Commun ; 464(1): 299-305, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26116772

RESUMO

Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration.


Assuntos
Tecido Adiposo/citologia , Meios de Cultivo Condicionados/farmacologia , Cemento Dentário/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Células-Tronco/citologia , Tecido Adiposo/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Cemento Dentário/citologia , Cemento Dentário/metabolismo , Regulação da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/antagonistas & inibidores , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Genes Dev ; 29(11): 1106-19, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26019175

RESUMO

Fibrosis is a common disease process in which profibrotic cells disturb organ function by secreting disorganized extracellular matrix (ECM). Adipose tissue fibrosis occurs during obesity and is associated with metabolic dysfunction, but how profibrotic cells originate is still being elucidated. Here, we use a developmental model to investigate perivascular cells in white adipose tissue (WAT) and their potential to cause organ fibrosis. We show that a Nestin-Cre transgene targets perivascular cells (adventitial cells and pericyte-like cells) in WAT, and Nestin-GFP specifically labels pericyte-like cells. Activation of PDGFRα signaling in perivascular cells causes them to transition into ECM-synthesizing profibrotic cells. Before this transition occurs, PDGFRα signaling up-regulates mTOR signaling and ribosome biogenesis pathways and perturbs the expression of a network of epigenetically imprinted genes that have been implicated in cell growth and tissue homeostasis. Isolated Nestin-GFP(+) cells differentiate into adipocytes ex vivo and form WAT when transplanted into recipient mice. However, PDGFRα signaling opposes adipogenesis and generates profibrotic cells instead, which leads to fibrotic WAT in transplant experiments. These results identify perivascular cells as fibro/adipogenic progenitors in WAT and show that PDGFRα targets progenitor cell plasticity as a profibrotic mechanism.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/fisiopatologia , Fibrose/fisiopatologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Adipogenia/genética , Animais , Diferenciação Celular , Proliferação de Células , Transplante de Células , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Camundongos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Células-Tronco/patologia
20.
Curr Rheumatol Rep ; 15(2): 304, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23307576

RESUMO

Fibrosis is the principal characteristic of the autoimmune disease known as scleroderma or systemic sclerosis (SSc). Studies published within the last three years suggest central involvement of platelet-derived growth factors (PDGFs) in SSc-associated fibrosis. PDGFs may also be involved in SSc-associated autoimmunity and vasculopathy. The PDGF signaling pathway is well understood and PDGF receptors are expressed on collagen-secreting fibroblasts and on mesenchymal stem and/or progenitor cells that may affect SSc in profound and unexpected ways. Although much work remains before we fully understand how PDGFs are involved in SSc, there is much interest in using PDGF inhibitors as a therapeutic approach to SSc.


Assuntos
Fator de Crescimento Derivado de Plaquetas/fisiologia , Escleroderma Sistêmico/fisiopatologia , Animais , Benzamidas/uso terapêutico , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fibrose/fisiopatologia , Humanos , Mesilato de Imatinib , Camundongos , Modelos Animais , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...