Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562729

RESUMO

Temperature is a critical parameter for biological function, yet there is a lack of approaches to modulate the temperature of biological specimens in a dynamic and high-throughput manner. We present the thermoPlate, a device for programmable control of temperature in each well of a 96-well plate, in a manner compatible with mammalian cell culture and live cell imaging. The thermoPlate maintains precise feedback control of temperature patterns independently in each well, with minutes-scale heating and cooling through ΔT ~15-20°C. A computational model that predicts thermal diffusion guides optimal design of heating protocols. The thermoPlate allowed systematic characterization of both synthetic and natural thermo-responsive systems. We first used the thermoPlate in conjunction with live-cell microscopy to characterize the rapid temperature-dependent phase separation of a synthetic elastin-like polypeptide (ELP53). We then measured stress granule (SG) formation in response to heat stress, observing differences in SG dynamics with each increasing degree of stress. We observed adaptive formation of SGs, whereby SGs formed but then dissolved in response to persistent heat stress (≥ 42°C). SG adaptation revealed a biochemical memory of stress that depended on both the time and temperature of heat shock. Stress memories continued to form even after the removal of heat and persisted for 6-9 hours before dissipating. The capabilities and open-source nature of the thermoPlate will empower the study and engineering of a wide range of thermoresponsive phenomena.

2.
bioRxiv ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38464222

RESUMO

Inducible protein switches are used throughout the biosciences to allow on-demand control of proteins in response to chemical or optical inputs. However, these inducers either cannot be controlled with precision in space and time or cannot be applied in optically dense settings, limiting their application in tissues and organisms. Here we introduce a protein module whose active state can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization through temperature), exists as a monomer in the cytoplasm at elevated temperatures but both oligomerizes and translocates to the plasma membrane when temperature is lowered. Using custom devices for rapid and high-throughput temperature control during live-cell microscopy, we find that the original Melt variant fully switches states between 28-32°C, and state changes can be observed within minutes of temperature changes. Melt was highly modular, permitting thermal control over diverse intracellular processes including signaling, proteolysis, and nuclear shuttling through straightforward end-to-end fusions with no further engineering. Melt was also highly tunable, giving rise to a library of Melt variants with switch point temperatures ranging from 30-40°C. The variants with higher switch points allowed control of molecular circuits between 37°C-41°C, a well-tolerated range for mammalian cells. Finally, Melt could thermally regulate important cell decisions over this range, including cytoskeletal rearrangement and apoptosis. Thus Melt represents a versatile thermogenetic module that provides straightforward, temperature-based, real-time control of mammalian cells with broad potential for biotechnology and biomedicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...