Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836637

RESUMO

AIM: Understanding the molecular identity of human pluripotent stem cell (hPSC)-derived cardiac progenitors and mechanisms controlling their proliferation and differentiation, is valuable for developmental biology and regenerative medicine. METHODS AND RESULTS: Here we show that chemical modulation of Histone Acetyl Transferases (HATs; by IQ-1) and WNT (by CHIR99021), synergistically enable the transient and reversible block of directed cardiac differentiation progression on hPSCs. The resulting stabilized cardiovascular progenitors (SCPs) are characterized by ISL1pos/KI-67pos/NKX2-5neg expression. In the presence of the chemical inhibitors, SCPs maintain a proliferation quiescent state. Upon small molecules removal SCPs resume proliferation and concomitant NKX2-5 upregulation triggers cell-autonomous differentiation into cardiomyocytes. Directed differentiation of SCPs into the endothelial and smooth muscle lineages confirms their full developmental potential typical of bona fide cardiovascular progenitors. Single-cell RNAseq-based transcriptional profiling of our in vitro generated human SCPs notably reflects the dynamic cellular composition of E8.25-E9.25 posterior second heart field (pSHF) of mouse hearts, hallmarked by NR2F2 expression. Investigating molecular mechanisms of SCP stabilization, we found that the cell-autonomously regulated Retinoic Acid (RA) and BMP signaling is governing SCPs transition from quiescence towards proliferation and cell-autonomous differentiation, reminiscent of a niche-like behavior. CONCLUSION: The chemically defined and reversible nature our stabilization approach provides an unprecedented opportunity to dissect mechanisms of cardiovascular progenitors' specification and reveal their cellular and molecular properties.

2.
ACS Appl Bio Mater ; 6(11): 4592-4597, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37890087

RESUMO

Protein misfolding and aggregation resulting in amyloid formation is directly linked to various diseases. Hence, there is keen interest in developing probes for the selective detection of such misfolded aggregated proteins. In this paper, we have shown the use of a nontoxic aggregation-induced emissive luminogen (AIEgen), BIDCPV, for the selective detection of insulin amyloid fibrils and their various stages of formation. We further verified the selective response of BIDCPV toward amyloid fibrils by testing the probe against Aß 42 peptides, which is well known to form the fibrils. Additionally, the low toxicity, efficient cellular internalization capability, and photostability make BIDCPV a unique candidate for sensing protein aggregates inside mammalian cells.


Assuntos
Peptídeos beta-Amiloides , Agregados Proteicos , Animais , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Mamíferos/metabolismo
3.
Pan Afr Med J ; 45: 23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521761
4.
J Pharm Sci ; 112(1): 264-271, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270539

RESUMO

Quality control is of critical importance in manufacturing of lyophilized drug product, which is accomplished by monitoring the process parameters. The residual gas analyzer has emerged as a useful tool in determination of endpoint for primary and secondary drying in lyophilization process as well as leak detection in vacuum systems. This study presents the application of in situ RGA to quantify outgassing rates of species released from aqueous inorganic and organic ammonium salt formulations throughout the freeze-drying process. The determination of ammonia outgassing conditions aids in ensuring product quality where ammonia release is an indication for loss of co-solvent or degradation of active pharmaceutical ingredients (APIs). Data analysis methods are developed to determine ammonia presence under various process conditions. In-situ real time monitoring of vapor dynamics enables RGA to be used as a tool to characterize counter-ion loss throughout the freeze-drying cycle.


Assuntos
Compostos de Amônio , Química Farmacêutica , Química Farmacêutica/métodos , Amônia , Liofilização/métodos , Composição de Medicamentos/métodos , Gases , Temperatura
5.
AAPS PharmSciTech ; 22(8): 266, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750693

RESUMO

This work describes the lyophilization process validation and consists of two parts. Part one (Part I: Process Design and Modeling) focuses on the process design and is described in the previous paper, while the current paper is devoted to process qualification and continued process verification. The goal of the study is to show the cutting edge of lyophilization validation based on the integrated community-based opinion and the industrial perspective. This study presents best practices for batch size determination and includes the effect of batch size on drying time, process parameters selection strategies, and batch size overage to compensate for losses during production. It also includes sampling strategies to demonstrate batch uniformity as well as the use of statistical models to ensure adequate sampling. Based on the LyoHUB member organizations survey, the best practices in determining the number of PPQ runs are developed including the bracketing approach with minimum and maximum loads. Standard practice around CQA and CPP selection is outlined and shows the advantages of using control charts and run charts for process trending and quality control. The case studies demonstrating the validation strategy for monoclonal antibody and the impact of the loading process on the lyophilization cycle and product quality as well as the special case of lyophilization for dual-chamber cartridge system are chosen to illustrate the process validation. The standard practices in the validation of the lyophilization process, special lyophilization processes, and their impact on the validation strategy are discussed.


Assuntos
Dessecação , Modelos Estatísticos , Liofilização , Controle de Qualidade , Temperatura
7.
AAPS PharmSciTech ; 22(7): 221, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34409506

RESUMO

This work describes lyophilization process validation and consists of two parts. Part I focuses on the process design and is described in the current paper, while part II is devoted to process qualification and continued process verification. The intent of these articles is to provide readers with recent updates on lyophilization validation in the light of community-based combined opinion on the process and reflect the industrial prospective. In this paper, the design space approach for process design is described in details, and examples from practice are provided. The approach shows the relationship between the process inputs; it is based on first principles and gives a thorough scientific understanding of process and product. The lyophilization process modeling and scale-up are also presented showing the impact of facility, equipment, and vial heat transfer coefficient. The case studies demonstrating the effect of batch sizes, fill volume, and dose strength to show the importance of modeling as well as the effect of controlled nucleation on product resistance are discussed.


Assuntos
Temperatura Alta , Tecnologia Farmacêutica , Liofilização , Estudos Prospectivos , Temperatura
8.
Cardiovasc Res ; 117(8): 1908-1922, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32777030

RESUMO

AIMS: Arrhythmias and sudden cardiac death (SCD) occur commonly in patients with heart failure. We found T-box 5 (TBX5) dysregulated in ventricular myocardium from heart failure patients and thus we hypothesized that TBX5 reduction contributes to arrhythmia development in these patients. To understand the underlying mechanisms, we aimed to reveal the ventricular TBX5-dependent transcriptional network and further test the therapeutic potential of TBX5 level normalization in mice with documented arrhythmias. METHODS AND RESULTS: We used a mouse model of TBX5 conditional deletion in ventricular cardiomyocytes. Ventricular (v) TBX5 loss in mice resulted in mild cardiac dysfunction and arrhythmias and was associated with a high mortality rate (60%) due to SCD. Upon angiotensin stimulation, vTbx5KO mice showed exacerbated cardiac remodelling and dysfunction suggesting a cardioprotective role of TBX5. RNA-sequencing of a ventricular-specific TBX5KO mouse and TBX5 chromatin immunoprecipitation was used to dissect TBX5 transcriptional network in cardiac ventricular tissue. Overall, we identified 47 transcripts expressed under the control of TBX5, which may have contributed to the fatal arrhythmias in vTbx5KO mice. These included transcripts encoding for proteins implicated in cardiac conduction and contraction (Gja1, Kcnj5, Kcng2, Cacna1g, Chrm2), in cytoskeleton organization (Fstl4, Pdlim4, Emilin2, Cmya5), and cardiac protection upon stress (Fhl2, Gpr22, Fgf16). Interestingly, after TBX5 loss and arrhythmia development in vTbx5KO mice, TBX5 protein-level normalization by systemic adeno-associated-virus (AAV) 9 application, re-established TBX5-dependent transcriptome. Consequently, cardiac dysfunction was ameliorated and the propensity of arrhythmia occurrence was reduced. CONCLUSIONS: This study uncovers a novel cardioprotective role of TBX5 in the adult heart and provides preclinical evidence for the therapeutic value of TBX5 protein normalization in the control of arrhythmia.


Assuntos
Arritmias Cardíacas/prevenção & controle , Morte Súbita Cardíaca/prevenção & controle , Ventrículos do Coração/metabolismo , Hipertrofia Ventricular Esquerda/terapia , Proteínas com Domínio T/metabolismo , Disfunção Ventricular Esquerda/terapia , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Sequenciamento de Cromatina por Imunoprecipitação , Morte Súbita Cardíaca/etiologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Terapia Genética , Frequência Cardíaca , Ventrículos do Coração/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Preparação de Coração Isolado , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA-Seq , Proteínas com Domínio T/genética , Transcrição Gênica , Transcriptoma , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda , Remodelação Ventricular
9.
Europace ; 22(7): 1119-1131, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32572487

RESUMO

AIMS: The multi-C2 domain protein dysferlin localizes to the T-Tubule system of skeletal and heart muscles. In skeletal muscle, dysferlin is known to play a role in membrane repair and in T-tubule biogenesis and maintenance. Dysferlin deficiency manifests as muscular dystrophy of proximal and distal muscles. Cardiomyopathies have been also reported, and some dysferlinopathy mouse models develop cardiac dysfunction under stress. Generally, the role and functional relevance of dysferlin in the heart is not clear. The aim of this study was to analyse the effect of dysferlin deficiency on the transverse-axial tubule system (TATS) structure and on Ca2+ homeostasis in the heart. METHODS AND RESULTS: We studied dysferlin localization in rat and mouse cardiomyocytes by immunofluorescence microscopy. In dysferlin-deficient ventricular mouse cardiomyocytes, we analysed the TATS by live staining and assessed Ca2+ handling by patch-clamp experiments and measurement of Ca2+ transients and Ca2+ sparks. We found increasing co-localization of dysferlin with the L-type Ca2+-channel during TATS development and show that dysferlin deficiency leads to pathological loss of transversal and increase in longitudinal elements (axialization). We detected reduced L-type Ca2+-current (ICa,L) in cardiomyocytes from dysferlin-deficient mice and increased frequency of spontaneous sarcoplasmic reticulum Ca2+ release events resulting in pro-arrhythmic contractions. Moreover, cardiomyocytes from dysferlin-deficient mice showed an impaired response to ß-adrenergic receptor stimulation. CONCLUSIONS: Dysferlin is required for TATS biogenesis and maintenance in the heart by controlling the ratio of transversal and axial membrane elements. Absence of dysferlin leads to defects in Ca2+ homeostasis which may contribute to contractile heart dysfunction in dysferlinopathy patients.


Assuntos
Cálcio , Acoplamento Excitação-Contração , Animais , Disferlina/genética , Camundongos , Miócitos Cardíacos , Ratos , Retículo Sarcoplasmático
10.
Circ Res ; 126(1): 6-24, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31730408

RESUMO

RATIONALE: Genome editing by CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is evolving rapidly. Recently, second-generation CRISPR/Cas9 activation systems based on nuclease inactive dead (d)Cas9 fused to transcriptional transactivation domains were developed for directing specific guide (g)RNAs to regulatory regions of any gene of interest, to enhance transcription. The application of dCas9 to activate cardiomyocyte transcription in targeted genomic loci in vivo has not been demonstrated so far. OBJECTIVE: We aimed to develop a mouse model for cardiomyocyte-specific, CRISPR-mediated transcriptional modulation, and to demonstrate its versatility by targeting Mef2d and Klf15 loci (2 well-characterized genes implicated in cardiac hypertrophy and homeostasis) for enhanced transcription. METHODS AND RESULTS: A mouse model expressing dCas9 with the VPR transcriptional transactivation domains under the control of the Myh (myosin heavy chain) 6 promoter was generated. These mice innocuously expressed dCas9 exclusively in cardiomyocytes. For initial proof-of-concept, we selected Mef2d, which when overexpressed, led to hypertrophy and heart failure, and Klf15, which is lowly expressed in the neonatal heart. The most effective gRNAs were first identified in fibroblast (C3H/10T1/2) and myoblast (C2C12) cell lines. Using an improved triple gRNA expression system (TRISPR [triple gRNA expression construct]), up to 3 different gRNAs were transduced simultaneously to identify optimal conditions for transcriptional activation. For in vivo delivery of the validated gRNA combinations, we employed systemic administration via adeno-associated virus serotype 9. On gRNA delivery targeting Mef2d expression, we recapitulated the anticipated cardiac hypertrophy phenotype. Using gRNA targeting Klf15, we could enhance its transcription significantly, although Klf15 is physiologically silenced at that time point. We further confirmed specific and robust dCas9VPR on-target effects. CONCLUSIONS: The developed mouse model permits enhancement of gene expression by using endogenous regulatory genomic elements. Proof-of-concept in 2 independent genomic loci suggests versatile applications in controlling transcription in cardiomyocytes of the postnatal heart.


Assuntos
Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Miocárdio/metabolismo , Ativação Transcricional , Animais , Linhagem Celular , Dependovirus/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Genes Sintéticos , Vetores Genéticos/genética , Coração/crescimento & desenvolvimento , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição MEF2/biossíntese , Fatores de Transcrição MEF2/genética , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Regiões Promotoras Genéticas , Domínios Proteicos , RNA Polimerase III/genética , RNA Guia de Cinetoplastídeos/genética
11.
J Am Coll Cardiol ; 74(14): 1804-1819, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31582141

RESUMO

BACKGROUND: The combination of cardiomyocyte (CM) and vascular cell (VC) fetal reprogramming upon stress culminates in end-stage heart failure (HF) by mechanisms that are not fully understood. Previous studies suggest KLF15 as a key regulator of CM hypertrophy. OBJECTIVES: This study aimed to characterize the impact of KLF15-dependent cardiac transcriptional networks leading to HF progression, amenable to therapeutic intervention in the adult heart. METHODS: Transcriptomic bioinformatics, phenotyping of Klf15 knockout mice, Wnt-signaling-modulated hearts, and pressure overload and myocardial ischemia models were applied. Human KLF15 knockout embryonic stem cells and engineered human myocardium, and human samples were used to validate the relevance of the identified mechanisms. RESULTS: The authors identified a sequential, postnatal transcriptional repression mediated by KLF15 of pathways implicated in pathological tissue remodeling, including distinct Wnt-pathways that control CM fetal reprogramming and VC remodeling. The authors further uncovered a vascular program induced by a cellular crosstalk initiated by CM, characterized by a reduction of KLF15 and a concomitant activation of Wnt-dependent transcriptional signaling. Within this program, a so-far uncharacterized cardiac player, SHISA3, primarily expressed in VCs in fetal hearts and pathological remodeling was identified. Importantly, the KLF15 and Wnt codependent SHISA3 regulation was demonstrated to be conserved in mouse and human models. CONCLUSIONS: The authors unraveled a network interplay defined by KLF15-Wnt dynamics controlling CM and VC homeostasis in the postnatal heart and demonstrated its potential as a cardiac-specific therapeutic target in HF. Within this network, they identified SHISA3 as a novel, evolutionarily conserved VC marker involved in pathological remodeling in HF.


Assuntos
Insuficiência Cardíaca/metabolismo , Fatores de Transcrição Kruppel-Like/deficiência , Proteínas de Membrana/biossíntese , Regulação para Cima/fisiologia , Remodelação Ventricular/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Fatores de Transcrição Kruppel-Like/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
J Pharm Sci ; 108(2): 842-850, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30257193

RESUMO

Protein formulation stability is difficult to predict a priori and generally involves long-term stability studies. It is of interest to develop an analytical method that can predict stability trends reliably. Here, pulse proteolysis was evaluated as an analytical tool to predict solution-state stability in different formulations. Four proteins formulated in different buffer and excipient compositions were subjected to urea-induced unfolding and brief enzymatic digestion ("pulse" proteolysis), and relative resistance to proteolysis was measured by microfluidics-based capillary electrophoresis-sodium dodecyl sulfate. Biophysical properties of each formulation were measured using orthogonal biophysical techniques such as differential scanning fluorimetry, differential scanning calorimetry, dynamic light scattering, circular dichroism, and fluorescence spectroscopy. Protein stability in all formulations was monitored by size exclusion chromatography on storage at 5°C and 40°C. For all 4 proteins, formulations with greater proteolytic resistance also showed higher monomer content on thermal stability. In contrast, standard biophysical techniques showed reasonable-to-no correlation with size exclusion chromatography data. The data support the use of pulse proteolysis as an orthogonal, quantitative, and predictive tool to measure protein conformational stability and rank-order formulations.


Assuntos
Anticorpos Monoclonais/química , Varredura Diferencial de Calorimetria , Composição de Medicamentos , Excipientes/química , Agregados Proteicos , Conformação Proteica , Estabilidade Proteica , Desdobramento de Proteína , Proteólise , Proteínas Recombinantes de Fusão/química
13.
J Pharm Sci ; 108(4): 1486-1495, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30468831

RESUMO

We have implemented the use of a small-scale, 7-vial Micro Freeze Dryer (MicroFD®; Millrock Technology, Inc.) that has the capability to accurately control heat transfer during lyophilization. We demonstrate the ability to fine-tune the MicroFD® vial heat transfer coefficient (Kv) to match the Kv of vials in a LyoStar III laboratory-scale unit. When the MicroFD® is run under conditions that match the Kv of the LyoStar III, the resulting lyophilization performance between scales results in equivalent product temperature profiles and critical quality attributes for the same drying process. The proposed workflow demonstrates how exploitation of Kv control in the MicroFD® enables cycle development of at-scale lyophilization processes using only 7 product vials. By changing the MicroFD®Kv, laboratory and, potentially, manufacturing cycles may be simulated using only 7 product vials for tremendous active pharmaceutical ingredient savings, as long as at-scale heat transfer coefficients are well characterized.


Assuntos
Composição de Medicamentos/instrumentação , Dessecação/instrumentação , Composição de Medicamentos/métodos , Composição de Medicamentos/normas , Liofilização/instrumentação , Liofilização/normas , Controle de Qualidade , Temperatura , Fluxo de Trabalho
14.
Prog Biophys Mol Biol ; 144: 51-60, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30553553

RESUMO

Cardiomyocyte and stroma cell cross-talk is essential for the formation of collagen-based engineered heart muscle, including engineered human myocardium (EHM). Fibroblasts are a main component of the myocardial stroma. We hypothesize that fibroblasts, by compacting the surrounding collagen network, support the self-organization of cardiomyocytes into a functional syncytium. With a focus on early self-organization processes in EHM, we studied the molecular and biophysical adaptations mediated by defined populations of fibroblasts and embryonic stem cell-derived cardiomyocytes in a collagen type I hydrogel. After a short phase of cell-independent collagen gelation (30 min), tissue compaction was progressively mediated by fibroblasts. Fibroblast-mediated tissue stiffening was attenuated in the presence of cardiomyocytes allowing for the assembly of stably contracting, force-generating EHM within 4 weeks. Comparative RNA-sequencing data corroborated that fibroblasts are particularly sensitive to the tissue compaction process, resulting in the fast activation of transcription profiles, supporting heart muscle development and extracellular matrix synthesis. Large amplitude oscillatory shear (LAOS) measurements revealed nonlinear strain stiffening at physiological strain amplitudes (>2%), which was reduced in the presence of cells. The nonlinear stress-strain response could be characterized by a mathematical model. Collectively, our study defines the interplay between fibroblasts and cardiomyocytes during human heart muscle self-organization in vitro and underscores the relevance of fibroblasts in the biological engineering of a cardiomyogenesis-supporting viscoelastic stroma. We anticipate that the established mathematical model will facilitate future attempts to optimize EHM for in vitro (disease modelling) and in vivo applications (heart repair).


Assuntos
Engenharia Celular , Elasticidade , Fibroblastos/citologia , Miócitos Cardíacos/citologia , Fenômenos Biomecânicos , Humanos , Pessoa de Meia-Idade , Modelos Biológicos , Estresse Mecânico , Viscosidade
15.
Artigo em Inglês | MEDLINE | ID: mdl-30594826

RESUMO

Intravenous (IV) infusion of therapeutic proteins typically involves dilution of the formulated product into infusion media such as normal saline or dextrose, 5% m/v in water. We report results from a rigorous evaluation of imaged capillary isoelectric focusing (iCIEF) for monitoring dextrose-mediated glycation of proteins in IV infusion solutions. In addition to detecting stable Amadori glycation products, iCIEF was able to detect the labile Schiff base (SB) glycation adducts since the equilibrium with free dextrose is maintained on capillary. Method parameters such as sample dilution factor and ampholyte composition (but not urea) were found to influence the observed level of SB glycation adducts. The impacts of dextrose and urea on the apparent pI values are also reported. iCIEF results were compared with results from cation exchange chromatography, which was found to preferentially detect the more stable Amadori glycation products due to the on-column decomposition of the SB adducts resulting from the separation of the protein from free dextrose which in turn altered the SB adduct- free dextrose equilibrium. These results demonstrate the need for careful consideration when selecting the analytical methodology to investigate protein sensitivity to dextrose and to monitor protein stability in dextrose-containing infusion solutions.


Assuntos
Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Eletroforese Capilar/métodos , Glucose/química , Focalização Isoelétrica/métodos , Administração Intravenosa , Anticorpos Monoclonais/administração & dosagem , Cromatografia por Troca Iônica/métodos , Glicosilação , Soluções/administração & dosagem , Soluções/química
16.
Nucleic Acids Res ; 46(6): 2850-2867, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29394407

RESUMO

Chromatin remodelling precedes transcriptional and structural changes in heart failure. A body of work suggests roles for the developmental Wnt signalling pathway in cardiac remodelling. Hitherto, there is no evidence supporting a direct role of Wnt nuclear components in regulating chromatin landscapes in this process. We show that transcriptionally active, nuclear, phosphorylated(p)Ser675-ß-catenin and TCF7L2 are upregulated in diseased murine and human cardiac ventricles. We report that inducible cardiomyocytes (CM)-specific pSer675-ß-catenin accumulation mimics the disease situation by triggering TCF7L2 expression. This enhances active chromatin, characterized by increased H3K27ac and TCF7L2 occupancies to cardiac developmental and remodelling genes in vivo. Accordingly, transcriptomic analysis of ß-catenin stabilized hearts shows a strong recapitulation of cardiac developmental processes like cell cycling and cytoskeletal remodelling. Mechanistically, TCF7L2 co-occupies distal genomic regions with cardiac transcription factors NKX2-5 and GATA4 in stabilized-ß-catenin hearts. Validation assays revealed a previously unrecognized function of GATA4 as a cardiac repressor of the TCF7L2/ß-catenin complex in vivo, thereby defining a transcriptional switch controlling disease progression. Conversely, preventing ß-catenin activation post-pressure-overload results in a downregulation of these novel TCF7L2-targets and rescues cardiac function. Thus, we present a novel role for TCF7L2/ß-catenin in CMs-specific chromatin modulation, which could be exploited for manipulating the ubiquitous Wnt pathway.


Assuntos
Cromatina/genética , Fator de Transcrição GATA4/genética , Insuficiência Cardíaca/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , beta Catenina/genética , Adulto , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Progressão da Doença , Fator de Transcrição GATA4/metabolismo , Perfilação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Camundongos Knockout , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Ligação Proteica , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
17.
J Pharm Sci ; 105(5): 1684-1692, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27044943

RESUMO

Myoglobin (Mb) was lyophilized in the absence (Mb-A) and presence (Mb-B) of sucrose in a pilot-scale lyophilizer with or without controlled ice nucleation. Cake morphology was characterized using scanning electron microscopy, and changes in protein structure were monitored using solid-state Fourier-transform infrared spectroscopy, solid-state hydrogen-deuterium exchange-mass spectrometry, and solid-state photolytic labeling-mass spectrometry (ssPL-MS). The results showed greater variability in nucleation temperature and irregular cake structure for formulations lyophilized without controlled nucleation. Controlled nucleation resulted in nucleation at ∼(-5°C) and uniform cake structure. Formulations containing sucrose showed better retention of protein structure by all measures than formulations without sucrose. Samples lyophilized with and without controlled nucleation were similar by most measures of protein structure. However, ssPL-MS showed the greatest photoleucine incorporation and more labeled regions for Mb-B lyophilized with controlled nucleation. The data support the use of solid-state hydrogen-deuterium exchange-mass spectrometry and ssPL-MS to study formulation and process-induced conformational changes in lyophilized proteins.


Assuntos
Mioglobina/análise , Mioglobina/química , Espectrometria de Massas em Tandem/métodos , Animais , Composição de Medicamentos , Liofilização/métodos , Cavalos , Espectrometria de Massas/métodos , Estrutura Secundária de Proteína , Difração de Raios X/métodos
18.
Curr Pharm Des ; 21(40): 5845-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26446463

RESUMO

The long-term stability of protein therapeutics in the solid-state depends on the preservation of native structure during lyophilization and in the lyophilized powder. Proteins can reversibly or irreversibly unfold upon lyophilization, acquiring conformations susceptible to degradation during storage. Therefore, characterizing proteins in the dried state is crucial for the design of safe and efficacious formulations. This review summarizes the basic principles and applications of the analytical techniques that are commonly used to characterize protein structure, dynamics and conformation in lyophilized solids. The review also discusses the applications of recently developed mass spectrometry based methods (solid-state hydrogen deuterium exchange mass spectrometry (ssHDX-MS) and solid-state photolytic labeling mass spectrometry (ssPL-MS)) and their ability to study proteins in the solid-state at high resolution.


Assuntos
Química Farmacêutica , Liofilização/métodos , Espectrometria de Massas/métodos , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Humanos
19.
Mol Pharm ; 12(9): 3237-49, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26204425

RESUMO

Protein structure and local environment in lyophilized formulations were probed using high-resolution solid-state photolytic cross-linking with mass spectrometric analysis (ssPC-MS). In order to characterize structure and microenvironment, protein-protein, protein-excipient, and protein-water interactions in lyophilized powders were identified. Myoglobin (Mb) was derivatized in solution with the heterobifunctional probe succinimidyl 4,4'-azipentanoate (SDA) and the structural integrity of the labeled protein (Mb-SDA) confirmed using CD spectroscopy and liquid chromatography/mass spectrometry (LC-MS). Mb-SDA was then formulated with and without excipients (raffinose, guanidine hydrochloride (Gdn HCl)) and lyophilized. The freeze-dried powder was irradiated with ultraviolet light at 365 nm for 30 min to produce cross-linked adducts that were analyzed at the intact protein level and after trypsin digestion. SDA-labeling produced Mb carrying up to five labels, as detected by LC-MS. Following lyophilization and irradiation, cross-linked peptide-peptide, peptide-water, and peptide-raffinose adducts were detected. The exposure of Mb side chains to the matrix was quantified based on the number of different peptide-peptide, peptide-water, and peptide-excipient adducts detected. In the absence of excipients, peptide-peptide adducts involving the CD, DE, and EF loops and helix H were common. In the raffinose formulation, peptide-peptide adducts were more distributed throughout the molecule. The Gdn HCl formulation showed more protein-protein and protein-water adducts than the other formulations, consistent with protein unfolding and increased matrix interactions. The results demonstrate that ssPC-MS can be used to distinguish excipient effects and characterize the local protein environment in lyophilized formulations with high resolution.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Excipientes/química , Liofilização/métodos , Mioglobina/metabolismo , Fragmentos de Peptídeos/metabolismo , Fotólise , Pós/química , Animais , Química Farmacêutica , Cromatografia Líquida/métodos , Guanidina/química , Cavalos , Espectrometria de Massas/métodos , Mioglobina/química , Fragmentos de Peptídeos/química , Água/química
20.
J Vis Exp ; (98): 52503, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25938927

RESUMO

Amide hydrogen/deuterium exchange (ssHDX-MS) and side-chain photolytic labeling (ssPL-MS) followed by mass spectrometric analysis can be valuable for characterizing lyophilized formulations of protein therapeutics. Labeling followed by suitable proteolytic digestion allows the protein structure and interactions to be mapped with peptide-level resolution. Since the protein structural elements are stabilized by a network of chemical bonds from the main-chains and side-chains of amino acids, specific labeling of atoms in the amino acid residues provides insight into the structure and conformation of the protein. In contrast to routine methods used to study proteins in lyophilized solids (e.g., FTIR), ssHDX-MS and ssPL-MS provide quantitative and site-specific information. The extent of deuterium incorporation and kinetic parameters can be related to rapidly and slowly exchanging amide pools (N fast, N slow) and directly reflects the degree of protein folding and structure in lyophilized formulations. Stable photolytic labeling does not undergo back-exchange, an advantage over ssHDX-MS. Here, we provide detailed protocols for both ssHDX-MS and ssPL-MS, using myoglobin (Mb) as a model protein in lyophilized formulations containing either trehalose or sorbitol.


Assuntos
Medição da Troca de Deutério/métodos , Espectrometria de Massas/métodos , Proteínas/química , Amidas/química , Liofilização/métodos , Cinética , Peptídeos/química , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...