Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37034586

RESUMO

Introduction: Spatio-temporal MRI methods enable whole-brain multi-parametric mapping at ultra-fast acquisition times through efficient k-space encoding, but can have very long reconstruction times, which limit their integration into clinical practice. Deep learning (DL) is a promising approach to accelerate reconstruction, but can be computationally intensive to train and deploy due to the large dimensionality of spatio-temporal MRI. DL methods also need large training data sets and can produce results that don't match the acquired data if data consistency is not enforced. The aim of this project is to reduce reconstruction time using DL whilst simultaneously limiting the risk of deep learning induced hallucinations, all with modest hardware requirements. Methods: Deep Learning Initialized Compressed Sensing (Deli-CS) is proposed to reduce the reconstruction time of iterative reconstructions by "kick-starting" the iterative reconstruction with a DL generated starting point. The proposed framework is applied to volumetric multi-axis spiral projection MRF that achieves whole-brain T1 and T2 mapping at 1-mm isotropic resolution for a 2-minute acquisition. First, the traditional reconstruction is optimized from over two hours to less than 40 minutes while using more than 90% less RAM and only 4.7 GB GPU memory, by using a memory-efficient GPU implementation. The Deli-CS framework is then implemented and evaluated against the above reconstruction. Results: Deli-CS achieves comparable reconstruction quality with 50% fewer iterations bringing the full reconstruction time to 20 minutes. Conclusion: Deli-CS reduces the reconstruction time of subspace reconstruction of volumetric spatio-temporal acquisitions by providing a warm start to the iterative reconstruction algorithm.

2.
Magn Reson Med ; 82(4): 1343-1358, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31106902

RESUMO

PURPOSE: To introduce a combined machine learning (ML)- and physics-based image reconstruction framework that enables navigator-free, highly accelerated multishot echo planar imaging (msEPI) and demonstrate its application in high-resolution structural and diffusion imaging. METHODS: Single-shot EPI is an efficient encoding technique, but does not lend itself well to high-resolution imaging because of severe distortion artifacts and blurring. Although msEPI can mitigate these artifacts, high-quality msEPI has been elusive because of phase mismatch arising from shot-to-shot variations which preclude the combination of the multiple-shot data into a single image. We utilize deep learning to obtain an interim image with minimal artifacts, which permits estimation of image phase variations attributed to shot-to-shot changes. These variations are then included in a joint virtual coil sensitivity encoding (JVC-SENSE) reconstruction to utilize data from all shots and improve upon the ML solution. RESULTS: Our combined ML + physics approach enabled Rinplane × multiband (MB) = 8- × 2-fold acceleration using 2 EPI shots for multiecho imaging, so that whole-brain T2 and T2 * parameter maps could be derived from an 8.3-second acquisition at 1 × 1 × 3-mm3 resolution. This has also allowed high-resolution diffusion imaging with high geometrical fidelity using 5 shots at Rinplane × MB = 9- × 2-fold acceleration. To make these possible, we extended the state-of-the-art MUSSELS reconstruction technique to simultaneous multislice encoding and used it as an input to our ML network. CONCLUSION: Combination of ML and JVC-SENSE enabled navigator-free msEPI at higher accelerations than previously possible while using fewer shots, with reduced vulnerability to poor generalizability and poor acceptance of end-to-end ML approaches.


Assuntos
Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...