Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 80(10): 2045-2055, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32132111

RESUMO

Keratinocyte carcinomas, including basal and squamous cell carcinomas, are the most common human cancers worldwide. While 75% of all keratinocyte carcinoma (4 million annual cases in the United States) are treated with conventional excision, this surgical modality has much lower cure rates than Mohs micrographic surgery, likely due to the bread-loaf histopathologic assessment that visualizes <1% of the tissue margins. A quenched protease-activated fluorescent probe 6qcNIR, which produces a signal only in the protease-rich tumor microenvironment, was topically applied to 90 specimens ex vivo immediately following excision. "Puzzle-fit" analysis was used to correlate the fluorescent images with histology. Probe-dependent fluorescent images correlated with cancer determined by conventional histology. Point-of-care fluorescent detection of skin cancer had a clinically relevant sensitivity of 0.73 and corresponding specificity of 0.88. Importantly, clinicians were effectively trained to read fluorescent images within 15 minutes with reliability and confidence, resulting in sensitivities of 62%-78% and specificities of 92%-97%. Fluorescent imaging using 6qcNIR allows 100% tumor margin assessment by generating en face images that correlate with histology and may be used to overcome the limitations of conventional bread-loaf histology. The utility of 6qcNIR was validated in a busy real-world clinical setting, and clinicians were trained to effectively read fluorescent margins with a short guided instruction, highlighting clinical adaptability. When used in conventional excision, this approach may result in higher cure rates at a lower cost by allowing same-day reexcision when needed, reducing patient anxiety and improving compliance by expediting postsurgical specimen assessment. SIGNIFICANCE: A fluorescent-probe-tumor-visualization platform was developed and validated in human keratinocyte carcinoma excision specimens that may provide simple, rapid, and global assessment of margins during skin cancer excision, allowing same-day reexcision when needed.


Assuntos
Carcinoma Basocelular/cirurgia , Carcinoma de Células Escamosas/cirurgia , Procedimentos Cirúrgicos Dermatológicos/métodos , Imagem Óptica/métodos , Neoplasias Cutâneas/cirurgia , Cirurgia Assistida por Computador/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Queratinócitos/patologia , Masculino , Margens de Excisão , Pessoa de Meia-Idade , Sensibilidade e Especificidade
2.
J Med Imaging (Bellingham) ; 6(1): 016001, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30915384

RESUMO

In an effort to increase the efficiency and cure rate of nonmelanoma skin cancer (NMSC) excisions, we have developed a point-of-care method of imaging and evaluation of skin cancer margins. We evaluate the skin surgical specimens using a smart, near-infrared probe (6qcNIR) that fluoresces in the presence of cathepsin proteases overexpressed in NMSC. Imaging is done with an inverted, flying-spot fluorescence scanner that reduces scatter, giving a 70% improved step response as compared to a conventional imaging system. We develop a scheme for careful comparison of fluorescent signals to histological annotation, which involves image segmentation, fiducial-based registration, and nonrigid free-form deformation on fluorescence images, corresponding color images, "bread-loafed" tissue images, hematoxylin and eosin (H&E)-stained slides, and pathological annotations. From epidermal landmarks, spatial accuracy in the bulk of the sample is ∼ 500 µ m , which when extrapolated with a linear stretch model, suggests an error at the margin of ∼ 100 µ m , within clinical reporting standards. Cancer annotations on H&E slides are transformed and superimposed on the fluorescence images to generate the final results. Using this methodology, fluorescence cancer signals are generally found to correspond spatially with histological annotations. This method will allow us to accurately analyze molecular probes for imaging skin cancer margins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...