Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 18(1): 114, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713009

RESUMO

Nanocarrier systems are widely used for drug delivery applications, but limitations such as the use of synthetic surfactants, leakage of toxic drugs, and a poor encapsulation capacity remain as challenges. We present a new hybrid nanocarrier system that utilizes natural materials to overcome these limitations and improve the safety and efficacy of drug delivery. The system comprises a biopolymeric shell and a lipid core, encapsulating the lipophilic anticancer drug paclitaxel. Bovine serum albumin and dextran, in various molecular weights, are covalently conjugated via Maillard reaction to form the shell which serves as a stabilizer to maintain nanoparticle integrity. The properties of the system, such as Maillard conjugate concentration, protein/polysaccharide molar ratio, and polysaccharide molecular weight, are optimized to enhance nanoparticle size and stability. The system shows high stability at different pH conditions, high drug loading capacity, and effective in vitro drug release through the trigger of enzymes and passive diffusion. Serine proteases are used to digest the protein portion of the nanoparticle shell to enhance the drug release. This nanocarrier system represents a significant advancement in the field of nanomedicine, offering a safe and effective alternative for the delivery of lipophilic drugs.

2.
ACS Appl Bio Mater ; 5(2): 622-629, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35014837

RESUMO

Development of safer nanomedicines for drug delivery applications requires immense efforts to improve clinical outcomes. Targeting a specific cell, biocompatibility and biodegradability are vital properties of a nanoparticle to fulfill the safety criteria in medical applications. Herein, we fabricate antibody-functionalized carnauba wax nanoparticles encapsulated a hydrophobic drug mimetic, which is potentially interesting for clinical use due to the inert and nontoxic properties of natural waxes. The nanoparticles are synthesized applying miniemulsion methods by solidifying molten wax droplets and further evaporating the solvent from the dispersion. The pH-selective adsorption of antibodies (IgG1, immunoglobulin G1, and CD340, an antihuman HER2 antibody) onto the nanoparticle surface is performed for practical and effective functionalization, which assists to overcome the complexity in chemical modification of carnauba wax. The adsorption behavior of the antibodies is studied using isothermal titration calorimetry (ITC), which gives thermodynamic parameters including the enthalpy, association constant, and stoichiometry of the functionalization process. Both antibodies exhibit strong binding at pH 2.7. The CD340-decorated wax nanoparticles show specific cell interaction toward BT474 breast cancer cells and retain the targeting function even after 6 months of storage period.


Assuntos
Neoplasias da Mama , Nanopartículas , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Imunoglobulinas , Ceras/química
3.
Biomacromolecules ; 21(11): 4469-4478, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32432855

RESUMO

Monitoring local temperature inside cells is crucial when interpreting biological activities as enhanced cellular metabolism leads to higher heat production and is commonly correlated with the presence of diseases such as cancer. In this study, we report on polymeric upconversion nanocapsules for potential use as local nanothermometers in cells by exploiting the temperature dependence of the triplet-triplet annihilation upconversion phenomenon. Nanocapsules synthesized by the miniemulsion solvent evaporation technique are composed of a polymer shell and a liquid core of rice bran oil, hosting triplet-triplet annihilation upconversion active dyes as sensitizer and emitter molecules. The sensitivity of the triplet-triplet annihilation upconversion to the local oxygen concentration was overcome by the oxygen reduction ability of the rice bran oil core. The triplet-triplet annihilation upconversion process could thus successfully be applied at different levels of oxygen presence including at ambient conditions. Using this method, the local temperature within a range of 22 to 40 °C could be determined when the upconversion nanocapsules were taken up by HeLa cells with good cellular viability. Thus, the higher cell temperatures where the cells show enhanced metabolic activity led to a significant increase in the delayed fluorescence spectrum of the upconversion nanocapsules. These findings are promising for further development of novel treatment and diagnostic tools in medicine.


Assuntos
Nanocápsulas , Fluorescência , Células HeLa , Humanos , Polímeros , Temperatura
4.
Adv Sci (Weinh) ; 6(7): 1801299, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30989019

RESUMO

Understanding the diffusion of nanoparticles through permeable membranes in cell mimics paves the way for the construction of more sophisticated synthetic protocells with control over the exchange of nanoparticles or biomacromolecules between different compartments. Nanoparticles postloading by swollen pH switchable polymersomes is investigated and nanoparticles locations at or within polymersome membrane and polymersome lumen are precisely determined. Validation of transmembrane diffusion properties is performed based on nanoparticles of different origin-gold, glycopolymer protein mimics, and the enzymes myoglobin and esterase-with dimensions between 5 and 15 nm. This process is compared with the in situ loading of nanoparticles during polymersome formation and analyzed by advanced multiple-detector asymmetrical flow field-flow fractionation (AF4). These experiments are supported by complementary i) release studies of protein mimics from polymersomes, ii) stability and cyclic pH switches test for in polymersome encapsulated myoglobin, and iii) cryogenic transmission electron microscopy studies on nanoparticles loaded polymersomes. Different locations (e.g., membrane and/or lumen) are identified for the uptake of each protein. The protein locations are extracted from the increasing scaling parameters and the decreasing apparent density of enzyme-containing polymersomes as determined by AF4. Postloading demonstrates to be a valuable tool for the implementation of cell-like functions in polymersomes.

5.
Macromol Rapid Commun ; 40(1): e1800577, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30507023

RESUMO

The formation of nanocapsules from a modular perspective for self-assembled nanocapsules, so-called polymersomes, and nanocapsules with a covalently formed shell are discussed in this review. It is shown that there are common and comparable ways for the selective and controlled release of payloads for stimuli-responsive systems and nanocapsule functionalization in order to use them for drug delivery and diagnostic applications.


Assuntos
Nanocápsulas/química , Polímeros/síntese química , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície
6.
Macromol Rapid Commun ; 38(21)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28960609

RESUMO

Increasing complexity and diversity of polymersomes and their compartments is a key issue for mimicking cellular functions and protocells. Thus, new challenges arise in terms of achieving tunable membrane permeability and combining it with control over the membrane diffusion process, and thus enabling a localized and dynamic control of functionality and docking possibilities within or on the surface of polymeric compartments. This study reports the concept of polymersomes with pH-tunable membrane permeability for controlling sequential docking and undocking processes of small molecules and nanometer-sized protein mimics selectively on the inside and outside of the polymersome membrane as a further step toward the design of intelligent multifunctional compartments for use in synthetic biology and as protocells. Host-guest interactions between adamantane and ß-cyclodextrin as well as noncovalent interactions between poly(ethylene glycol) tails and ß-cyclodextrin are used to achieve selective and dynamic functionalization of the inner and outer spheres of the polymersome membrane.


Assuntos
Simulação de Acoplamento Molecular , Polímeros/química , Difusão Dinâmica da Luz , Concentração de Íons de Hidrogênio , Espectrofotometria Ultravioleta , beta-Ciclodextrinas/química
7.
ACS Appl Mater Interfaces ; 8(24): 15788-801, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27269188

RESUMO

Fixing polymersomes onto surfaces is in high demand not only for the characterization with advanced microscopy techniques but also for designing specific compartments in microsystem devices in the scope of nanobiotechnology. For this purpose, this study reports the immobilization of multifunctional, responsive, and photo-cross-linked polymersomes on solid substrates by utilizing strong adamantane-ß-cyclodextrin host-guest interactions. To reduce nonspecific binding and retain better spherical shape, the level of attractive forces acting on the immobilized polymersomes was tuned through poly(ethylene glycol) passivation as well as decreased ß-cyclodextrin content on the corresponding substrates. One significant feature of this system is the pH responsivity of the polymersomes which has been demonstrated by swelling of the immobilized vesicles at acidic condition through in situ AFM measurements. Also, light responsivity has been provided by introducing nitroveratryloxycarbonyl (NVOC) protected amine molecules as photocleavable groups to the polymersome surface before immobilization. The subsequent low-energy femtosecond pulsed laser irradiation resulted in the cleavage of NVOC groups on immobilized polymersomes which in turn led to free amino groups as an additional functionality. The freed amines were further conjugated with a fluorescent dye having an activated ester that illustrates the concept of bio/chemo recognition for a potential binding of biological compounds. In addition to the responsive nature, the mechanical stability of the analyzed polymersomes was supported by computing Young's modulus and bending modulus of the membrane through force curves obtained by atomic force microscopy measurements. Overall, polymersomes with a robust and pH-swellable membrane combined with effective light responsive behavior are promising tools to design smart and stable compartments on surfaces for the development of microsystem devices such as chemo/biosensors.


Assuntos
Fotoquímica , Polietilenoglicóis/química , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Raios Infravermelhos , Microscopia de Força Atômica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...