Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(18): 12634-12638, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645524

RESUMO

The synthesis of zeolites from two-dimensional layered precursors through interlayer crosslinking of the layers is a promising avenue for realizing meticulously designed synthesis routes. However, the presence of defective silanol species in the precursors hinders the achievement of desirable synthesis outcomes. This study focuses on PREFER-a layered precursor for FER-type zeolites-which was synthesized and subjected to a liquid-mediated defect-healing treatment that we recently developed. The defect-healing process involves the use of fluoride compounds for reconstruction and organic pore fillers to stabilize the framework. The effects of the treatment on the structure, composition, and iron insertion behavior of PREFER were examined. Characterization results revealed a reduction in the number of intralayer silanol defects, whereas interlayer silanols were unaffected by the defect-healing treatment. Furthermore, the subsequent alterations observed in the crosslinking behavior with iron atoms indicated that the defect-healing treatment may enhance the insertion of iron species between the layers in more homogeneous environments compared with the untreated precursor. These findings provide valuable insights into the prospects of controlled interlayer linkage in two-dimensional zeolite materials.

2.
Chemistry ; 30(9): e202303177, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38095051

RESUMO

The low temperature activity of Fe-loaded zeolites as selective catalytic reduction of NOx by NH3 (NH3 -SCR) catalysts is a critical drawback for practical application. Here, we found unexpected improvement of low temperature activity by our proposed post-synthetic treatment. An Al-rich zeolite beta (Si/Al=5) is employed as the catalyst support, and the parent sample is dealuminated for higher hydrothermal stability, followed by the liquid-mediated stabilization treatment and impregnation. It is found that stabilized samples feature excellent low temperature activity and high N2 selectivity even for a long-term operation, along with the ability to maintain high NOx conversion after aging. The improved SCR activity should be attributed to abundant acid sites in Al-rich framework and better stabilization of monomeric iron species after the stabilization treatment. Furthermore, the low yield of side product N2 O is probably due to the absence of the generation of NH4 NO3 during NH3 -SCR catalyzed by Fe-loaded zeolites.

3.
ACS Appl Mater Interfaces ; 15(42): 49500-49510, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37819915

RESUMO

Since high-purity blue- and white-light emitters are an indispensable group of materials for the creation of next-generation optical devices, a number of light-emitting materials have been developed from both inorganic and organic synthetic chemistry. However, these synthetic chemical methods are far from the perspective of green chemistry due to the multistep synthetic process and the use of toxic reagents and elements. Herein, we demonstrate that the introduction of simple unsubstituted anthracenes into zeolite-like pores can create a wide variety of luminescent materials, from ultrapure blue luminescent materials (emission peak at 465 nm with a full width of half-maximum of 8.57 nm) to efficient white luminescent materials [CIE coordination at (0.31, 0.33) with a quantum efficiency of 11.0% under 350 nm excitation light]. The method for rational design of the luminescent materials consists of the following two key strategies: one is molecular orbital confinement of the anthracene molecules in the zeolite nanocavity for regulating the molecular coordination associated with photoexcitation and emission and the other is the interaction of unsubstituted anthracenes with extra-framework aluminum species to stabilize the 2-dehydride anthracene cation in the zeolite cavity.

4.
J Phys Chem Lett ; 14(14): 3574-3580, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37018077

RESUMO

To understand the crystallization mechanism of zeolites, it is important to clarify the detailed role of the structure-directing agent, which is essential for the crystallization of zeolite, interacting with an amorphous aluminosilicate matrix. In this study, to reveal the structure-directing effect, the evolution of the aluminosilicate precursor which causes the nucleation of zeolite is analyzed by the comprehensive approach including atom-selective methods. The results of total and atom-selective pair distribution function analyses and X-ray absorption spectroscopy indicate that a crystalline-like coordination environment gradually forms around Cs cations. This corresponds to the fact that Cs is located at the center of the d8r units in the RHO structure whose unit is unique in this zeolite, and a similar tendency is also confirmed in the ANA system. The results collectively support the conventional hypothesis that the formation of the crystalline-like structure before the apparent nucleation of the zeolite.

5.
Sci Adv ; 8(25): eabo3093, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731864

RESUMO

Small-pore zeolites are gaining increasing attention owing to their superior catalytic performance. Despite being critical for the catalytic activity and lifetime, postsynthetic tuning of bulk Si/Al ratios of small-pore zeolites has not been achieved with well-preserved crystallinity because of the limited mass transfer of aluminum species through narrow micropores. Here, we demonstrate a postsynthetic approach to tune the composition of small-pore zeolites using a previously unexplored strategy named pore-opening migration process (POMP). Acid treatment assisted by stabilization of the zeolite framework by organic cations in pores is proven to be successful for the removal of Al species from zeolite via POMP. Furthermore, the dealuminated AFX zeolite is treated via defect healing, which yields superior hydrothermal stability against severe steam conditions. Our findings could facilitate industrial applications of small-pore zeolites via aluminum content control and defect healing and could elucidate the structural reconstruction and arrangement processes for inorganic microporous materials.

6.
Nanomaterials (Basel) ; 12(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35159741

RESUMO

The effect of external hydrostatic pressure on the hydrothermal synthesis of the microporous silicoaluminophosphate SAPO-18 has been explored. The crystallization of the SAPO-18 phase is inhibited at 150 °C under high pressures (200 MPa) when using relatively diluted synthesis mixtures. On the contrary, the use of concentrated synthesis mixtures allowed SAPO-18 to be obtained in all the studied conditions. The obtained solids were characterized with XRD, SEM, ICP-AES, TG and 27Al and 31P MAS NMR spectroscopy. The results highlight the importance of the external pressure effect on the hydrothermal synthesis of molecular sieves and its influence on the interaction between the organic molecule and the silicoaluminophosphate network.

7.
J Am Chem Soc ; 143(29): 10986-10997, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34270233

RESUMO

The crystallization of zeolites, a disorder-to-order transformation of aluminosilicates, has not been thoroughly understood because the nucleation events in the amorphous matrix are difficult to recognize from the diverse structural changes, especially for the dense hydrogel systems. Therefore, relationships between the synthesis conditions, the generated amorphous species, and the crystallization behavior of zeolites remain unclear. Herein, by comparatively investigating the structural evolution of the aluminosilicate matrix in a dense hydrogel system when different Si reactants (fumed silica and silicate solution) are employed, we demonstrate that the reactivity of the reactants and the kinetics of the condensation reaction is critical to the formation of short-range order in an amorphous matrix, which greatly influences the nucleation frequency of zeolites. It was revealed that an amorphous solid containing plentiful Al-rich four-membered rings and Si-rich six-membered rings could be produced when fumed silica gradually reacted with sodium aluminate solution at 80 °C. It is considered that the interaction between these rings promotes the construction of the essential building units of zeolite X (FAU). In contrast, a complex aluminosilicate matrix was formed immediately when sodium silicate solution was mixed with sodium aluminate solution due to the intense condensation reaction. Furthermore, this complex matrix became more stable when the reactant mixture was hydrothermally treated at 80 °C, which significantly impedes the crystallization process. Aging the reactant mixture at ambient temperature before heating, instead, facilitated the formation of short-range order in the amorphous matrix, which increases the nucleation frequency of zeolites.

8.
Chem Sci ; 12(22): 7677-7695, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34168820

RESUMO

Zeolites have been successfully employed in many catalytic reactions of industrial relevance. The severe conditions required in some processes, where high temperatures are frequently combined with the presence of steam, highlight the need of considering the evolution of the catalyst structure during the reaction. This review attempts to summarize the recently developed strategies to improve the hydrothermal framework stability of zeolites.

9.
Chem Commun (Camb) ; 57(11): 1312-1315, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33480896

RESUMO

N2O is typically present as a trace gas in chemical processes, but its emission causes serious environmental issues. We herein demonstrate that ion-exchanged mordenite zeolites (framework code: MOR) can exhibit high capacities for N2O adsorption under ambient conditions. In particular, a natural MOR zeolite gives an adsorption capacity as high as 0.34 mmol-N2O per g-zeolite (1 atm, 25 °C), representing the best performing material among all zeolite-based adsorbents reported so far. The results contribute toward a comprehensive understanding of the structure-activity relationship and offer insights to establishing a zeolite-based adsorption system for enriching or removing N2O.


Assuntos
Poluentes Atmosféricos/química , Óxido Nitroso/química , Zeolitas/química , Adsorção , Troca Iônica
10.
RSC Adv ; 11(37): 23082-23089, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35480439

RESUMO

During AEI zeolite synthesis using acid treated FAU (AcT-FAU), we found the recrystallization of high-silica FAU with high crystallinity and Si/Al ratio of 6.1 using N,N-dimethyl-3,5-dimethylpiperidinium hydroxide (DMDMPOH) after 2 h, followed by the crystallization of AEI via FAU-to-AEI interzeolite conversion at a longer synthesis time. In order to understand the formation mechanism of high-silica FAU and generalize its direct synthesis, we have investigated this synthesis process. An analysis of the short-range structure of AcT-FAU revealed that it has an ordered aluminosilicate structure having a large fraction of 4-rings despite its low crystallinity. The changes in the composition of the products obtained at different synthesis times suggested that DMDMP+ plays a certain role in the stabilization of the FAU zeolite framework. Moreover, the results of thermogravimetric analysis showed that the thermal stability of DMDMP+ changed with the zeolite conversion. To the best of our knowledge, this is the first study to clarify the structure-directing effect of DMDMP+ on FAU zeolite formation.

11.
Angew Chem Int Ed Engl ; 59(45): 20099-20103, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32720465

RESUMO

The STW-type zeolite is attractive for developing novel enantioselective syntheses/separation of chiral compounds because it is the only chiral zeolitic microporous material whose enantioenriched synthesis has been achieved. In addition to the conventional industries in which zeolites are used, STW should have diverse industrial applications in the pharmaceutical and food industries. However, the toxic and caustic fluoride required for synthesizing STW severely hinders its commercialization by mass production. Herein, we report the first example of fluoride-free STW synthesis, in which the two roles of fluoride-formation of a zeolitic framework rich in tetravalent T-atoms and promotion of double 4-membered ring unit formation-were substituted by dry gel conversion and Ge addition, respectively. The STW obtained was highly crystalline, with a similar micropore volume and thermal stability as those of original fluoride-based STW. Our approach is promising not only for the fluoride-free synthesis of enantiomeric STW but also for general fluoride-free syntheses.

12.
Chem Asian J ; 15(13): 2029-2034, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32394618

RESUMO

The development of inexpensive inorganic ion-exchangers for the purification of environmental pollutants is a social demand. Amorphous aluminosilicates with a relatively high homogeneous Al environment are prepared by a feasible co-precipitation method, i. e., mixing an acidic aluminum sulfate solution and basic sodium silicate solution, which exhibit excellent ion-exchange selectivity for Cs+ and Sr2+ . The Kd value for Sr2+ was comparable with that of zeolite 4A. The local structures and ion-exchange behavior of the amorphous aluminosilicates are systematically investigated. The ion-exchange property of the amorphous aluminosilicates can be tuned by changing the interaction between the exchangeable cation and the amorphous aluminosilicates. Also, the amorphous aluminosilicates can adsorb bulky cations that zeolites hardly adsorb due to the limitation of the miropore size of zeolites.

13.
J Am Chem Soc ; 142(8): 3931-3938, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017544

RESUMO

Improving the stability of porous materials for practical applications is highly challenging. Aluminosilicate zeolites are utilized for adsorptive and catalytic applications, wherein they are sometimes exposed to high-temperature steaming conditions (∼1000 °C). As the degradation of high-silica zeolites originates from the defect sites in their frameworks, feasible defect-healing methods are highly demanded. Herein, we propose a method for healing defects to create extremely stable high-silica zeolites. High-silica (SiO2/Al2O3 > 240) zeolites with *BEA-, MFI-, and MOR-type topologies could be stabilized by significantly reducing the number of defect sites via a liquid-mediated treatment without using additional silylating agents. Upon exposure to extremely high temperature (900-1150 °C) steam, the stabilized zeolites retain their crystallinity and micropore volume, whereas the parent commercial zeolites degrade completely. The proposed self-defect-healing method provides new insights into the migration of species through porous bodies and significantly advances the practical applicability of zeolites in severe environments.

14.
Phys Chem Chem Phys ; 21(7): 4015-4021, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30714062

RESUMO

Understanding the properties of zeolites for cation exchange is important because the ion-exchange performance largely determines their suitability in applications such as catalysis and adsorptive separation. We synthesized a Zn(ii)-incorporated mordenite-framework aluminosilicate zeolite (Zn,Al-MOR), in which both Zn and Al are substituted in the framework, and studied its ion-exchange behavior for multivalent cations. For comparison, the original aluminosilicate mordenite (Al-MOR) was also synthesized with a composition adjusted to ensure that its charge density was similar to that of Zn,Al-MOR. While the incorporation of Zn(ii) led to a slower kinetic process, the selectivities and the exchange capacities toward multivalent cations (especially divalent cations) were significantly improved. Herein, we discussed the mechanism responsible for improving the ion-exchange performance in the presence of Zn(ii) and found that the incorporation of Zn(ii) led to a significant improvement in the ion-exchange temperature dependence of the MOR, which led to the ability to enhance ion-exchange capacity through temperature control during actual application. It was also revealed that the presence of Zn(ii) significantly improves selectivity and spontaneity toward the exchange of multivalent cations, Ni2+. Moreover, XRD and nitrogen-adsorption/desorption analyses revealed that the structures of the materials are maintained during the ion exchange, which is indicative of superior structural stability and tolerance to ion exchange.

15.
RSC Adv ; 9(29): 16790-16796, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35516373

RESUMO

Shortening the synthesis time of SSZ-16 (AFX type) zeolite from several days to 2 h has been achieved using an ultrafast synthesis route involving N,N,N',N'-tetraethylbicyclo[2.2.2]oct-7-ene-2,3:5,6-dipyrrolidinium (TEBOP) as an organic structure-directing agent (OSDA) in a tubular reactor assisted by seed crystals. Recently, copper exchanged SSZ-16 has been looked upon as one of the few equivalents to SSZ-13 for the selective catalytic reduction of NOx with ammonia (NH3-SCR) from automobile exhausts. Hydrothermal stability is one of the crucial properties for any zeolites that compete for automobile applications. All the samples prepared were analyzed using sophisticated physio-chemical techniques and those prepared from TEBOP were subjected to SCR of NOx reactions. The rapid crystal growth induced by high synthesis temperature bestowed the ultrafast prepared SSZ-16 with high crystallinity and hydrothermal stability as well as enhanced SCR of NOx activity even when aged at 800 °C. Compared to 1,1'-(1,4-butanediyl)bis-4-aza-1-azoniabicyclo[2.2.2]octane dibromide (DABCO), TEBOP was found to be desirable as an OSDA for high crystallinity and hydrothermal stability.

16.
Dalton Trans ; 47(28): 9546-9553, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-29969123

RESUMO

MFI zeolites exchanged with various cations have gained a great deal of attention as catalysts. Increase in the ion-exchange capacity of zeolites can improve their catalytic properties by introducing more active sites; however, the ion-exchange capacity of MFI zeolites is limited by maximum aluminum content in the structure. To improve the ion-exchange capability of the MFI zeolites beyond the upper limit of the aluminosilicate MFI zeolites, we propose herein an approach to incorporate Zn(ii) in the zeolitic framework, because Zn in the framework sites generates two negative charges per atom. Using zincoaluminosilicate gels prepared via co-precipitation, organic-free synthesis of zincoaluminosilicate MFI zeolites was achieved. The obtained zincoaluminosilicate MFI zeolites had high Zn contents comparable to those in the initial zincoaluminosilicate gels with both Zn and Al in the zeolite framework. In contrast, the use of conventional sources of Si, Al, and Zn resulted in zeolites with extra-framework zinc oxide species. The obtained Zn-substituted MFI zeolites were shown to possess higher ion-exchange capacity compared to aluminosilicate MFI zeolites. It was also revealed that the zincoaluminosilicate MFI zeolites have high affinity for the divalent cation compared to the aluminosilicate analog, likely due to the two negative charges in close proximity. Because of these higher ion-exchange efficiencies, especially for divalent cations, the obtained zincoaluminosilicate MFI zeolites are expected to be efficient platforms for several important catalytic reactions.

17.
Chemistry ; 24(4): 808-812, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29222868

RESUMO

There is growing interest to develop zeolite materials capable of stabilizing divalent cations such as Cu2+ , Fe2+ , and Ni2+ for catalytic applications. Herein the synthesis of a new microporous zincosilicate with CHA zeolite topology is reported for the first time, by particularly focusing on the mixing procedures of the raw materials to prevent the precipitation of zinc oxides/hydroxides and the formation of impurity phases. The obtained zincosilicate CHA products possess remarkably higher ion-exchange ability for catalytically useful, divalent cations, demonstrated here using Ni2+ as an example, compared to that of aluminosilicate and zincoaluminosilicate analogs. It is anticipated that these zincosilicate CHA materials can be an efficient platform for several important catalytic reactions. In addition, the present finding would provide a general guideline for effective substitution of other heteroatoms into the zeolite frameworks.

18.
Materials (Basel) ; 10(12)2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29240708

RESUMO

The field of porous materials is widely spreading nowadays, and researchers need to read tremendous numbers of papers to obtain a "bird's eye" view of a given research area. However, it is difficult for researchers to obtain an objective database based on statistical data without any relation to subjective knowledge related to individual research interests. Here, citation network analysis was applied for a comparative analysis of the research areas for zeolites and metal-organic frameworks as examples for porous materials. The statistical and objective data contributed to the analysis of: (1) the computational screening of research areas; (2) classification of research stages to a certain domain; (3) "well-cited" research areas; and (4) research area preferences of specific countries. Moreover, we proposed a methodology to assist researchers to gain potential research ideas by reviewing related research areas, which is based on the detection of unfocused ideas in one area but focused in the other area by a bibliometric approach.

19.
Dalton Trans ; 46(33): 10837-10846, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28762409

RESUMO

Zeolites containing Zn in their frameworks are promising materials for ion-exchange and catalysis because of their unique ion-exchange capabilities and characteristic Lewis acidity. However, expensive organic compounds often required in their synthesis can prevent their practical uses. Here, a facile organic-free synthesis route for new zincoaluminosilicate zeolites having MOR topology, in which both Zn and Al are substituted in the framework, is demonstrated for the first time. The use of homogeneous zincoaluminosilicate gels prepared by a co-precipitation technique as raw materials is vital for the successful incorporation of both Zn and Al into the zeolite frameworks as revealed by several characterization techniques including solid-state NMR and UV-vis spectroscopy, and ion-exchange experiments. The obtained zincoaluminosilicate zeolites had high Zn contents comparable to those in the initial zincoaluminosilicate gels. In contrast, the uses of conventional sources of Si, Al, and Zn resulted in zeolites with very low contents of framework Zn or zeolites with extra-framework zinc oxide-species. FT-IR measurements using probe molecules and ion-exchange experiments suggested that there are two different environments of Zn in the zeolite frameworks. The obtained zincoaluminosilicate zeolites showed a higher ion-exchange efficiency for divalent cations such as nickel compared to the aluminosilicate analog. It is expected that the present co-precipitation technique is efficient for the incorporation of Zn (and other metals) into a variety of zeolite frameworks. To show its extended applicable scope, the synthesis of zincoaluminosilicate *BEA zeolite is also demonstrated.

20.
Chem Commun (Camb) ; 53(50): 6796-6799, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28603795

RESUMO

High-silica erionite (ERI) zeolites are conventionally synthesised via a so-called charge density mismatch (CDM) approach, and a typical synthesis takes several days to complete. We herein demonstrate an ultrafast route to synthesise high-silica erionite zeolites in as short as 2 h at 210 °C. The fast-synthesised ERI has been proved to show higher hydrothermal stability compared with the conventionally synthesised product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...