Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 26(11): 2604-2616, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195724

RESUMO

Duchenne muscular dystrophy (DMD), a severe hereditary disease affecting 1 in 3,500 boys, mainly results from the deletion of exon(s), leading to a reading frameshift of the DMD gene that abrogates dystrophin protein synthesis. Pairs of sgRNAs for the Cas9 of Staphylococcus aureus were meticulously chosen to restore a normal reading frame and also produce a dystrophin protein with normally phased spectrin-like repeats (SLRs), which is not usually obtained by skipping or by deletion of complete exons. This can, however, be obtained in rare instances where the exon and intron borders of the beginning and the end of the complete deletion (patient deletion plus CRISPR-induced deletion) are at similar positions in the SLR. We used pairs of sgRNAs targeting exons 47 and 58, and a normal reading frame was restored in myoblasts derived from muscle biopsies of 4 DMD patients with different exon deletions. Restoration of the DMD reading frame and restoration of dystrophin expression were also obtained in vivo in the heart of the del52hDMD/mdx. Our results provide a proof of principle that SaCas9 could be used to edit the human DMD gene and could be considered for further development of a therapy for DMD.


Assuntos
Sistemas CRISPR-Cas/genética , Distrofina/genética , Terapia Genética , Distrofia Muscular de Duchenne/genética , Animais , Proteína 9 Associada à CRISPR/genética , Modelos Animais de Doenças , Distrofina/uso terapêutico , Éxons/genética , Mutação da Fase de Leitura/genética , Edição de Genes , Regulação da Expressão Gênica , Humanos , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/terapia , Mioblastos , Deleção de Sequência , Staphylococcus aureus/enzimologia
2.
Methods Mol Biol ; 1687: 267-283, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29067670

RESUMO

The discovery of the CRISPR-Cas9 system raises hope for the treatment of many genetic disorders. We describe here an approach based on the use of a pair of single guide RNAs to form a hybrid exon that does not only restore the dystrophin gene reading frame but also results in the production of a dystrophin protein with an adequate structure of the central rod-domain, with a correct spectrin-like repeat. The therapeutic approach described here involved DMD patient cells having a deletion of exons 51-53 of the DMD gene.


Assuntos
Sistemas CRISPR-Cas/genética , Distrofina/genética , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Éxons , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Mutação , RNA Guia de Cinetoplastídeos/genética
4.
Mol Ther Nucleic Acids ; 5: e283, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26812655

RESUMO

The CRISPR/Cas9 system is a great revolution in biology. This technology allows the modification of genes in vitro and in vivo in a wide variety of living organisms. In most Duchenne muscular dystrophy (DMD) patients, expression of dystrophin (DYS) protein is disrupted because exon deletions result in a frame shift. We present here the CRISPR-induced deletion (CinDel), a new promising genome-editing technology to correct the DMD gene. This strategy is based on the use of two gRNAs targeting specifically exons that precede and follow the patient deletion in the DMD gene. This pair of gRNAs induced a precise large additional deletion leading to fusion of the targeted exons. Using an adequate pair of gRNAs, the deletion of parts of these exons and the intron separating them restored the DMD reading frame in 62% of the hybrid exons in vitro in DMD myoblasts and in vivo in electroporated hDMD/mdx mice. Moreover, adequate pairs of gRNAs also restored the normal spectrin-like repeat of the dystrophin rod domain; such restoration is not obtained by exon skipping or deletion of complete exons. The expression of an internally deleted DYS protein was detected following the formation of myotubes by the unselected, treated DMD myoblasts. Given that CinDel induces permanent reparation of the DMD gene, this treatment would not have to be repeated as it is the case for exon skipping induced by oligonucleotides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...