Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 48(7): 605-609, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29889619

RESUMO

Filamentous fungi from the genus Aspergillus are of high importance for the production of organic acids. Itaconic acid (IA) is considered as an important component for the production of synthetic fibers, resin, plastics, rubber, paints, coatings, adhesives, thickeners and binders. Aspergillus niveus MG183809 was isolated from the soil sample (wastewater unit) which was collected from Avadi, Chennai, India. In the present study, itaconic acid was successfully produced by isolated A. niveus by submerged batch fermentation. In the fermentation process, various low-cost substrates like corn starch, wheat flour and sweet potato were used for itaconic acid production. Further, the factor influencing parameters such as substrate concentration and incubation period were optimized. Maximum yield of itaconic acid (15.65 ± 1.75 g/L) was achieved by using A. niveus from corn starch at a concentration of 120 g/L after 168 hr (pH 3.0). And also extraction of itaconic acid from the fermentation was performed with 91.96 ± 1.57 degree of extraction.

2.
Mater Sci Eng C Mater Biol Appl ; 33(4): 2273-9, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23498258

RESUMO

The covalent binding of pectinase onto amino functionalized silica-coated magnetic nanoparticles (CSMNPs) through glutaraldehyde activation was investigated for nanobiocatalyst fabrication. The average particle size and morphology of the nanoparticles were characterized using transmission electron microscopy (TEM). The statistical analysis for TEM image suggests that the coating and binding process did not cause any significant change in size of MNPs. The morphological and phase change of the magnetic nanoparticles (MNPs) after various coatings and immobilization were characterized by X-ray diffraction (XRD) studies. The various surface modifications and pectinase binding onto nanoparticles were confirmed by Fourier transform infrared (FT-IR) spectroscopy. The maximum activity of immobilized pectinase was obtained at its weight ratio of 19.0×10(-3) mg bound pectinase/mg CSMNPs. The pH, temperature, reusability, storage ability and kinetic studies were established to monitor their improved stability and activity of the fabricated nanobiocatalyst. Furthermore, the application was extended in the clarification of Malus domestica juice.


Assuntos
Biocatálise , Óxido Ferroso-Férrico/química , Nanopartículas/química , Nanotecnologia/métodos , Pectinas/metabolismo , Poligalacturonase/metabolismo , Dióxido de Silício/química , Bebidas , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Nanopartículas de Magnetita/ultraestrutura , Malus/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Reciclagem , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...