Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 373(Pt B): 131252, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34758432

RESUMO

Novel bioactive nanoparticles derived from crude palm oil (CPO), palm olein, and palm stearin for use in foodstuff products were produced, and their physicochemical characteristics and stability were evaluated. The nanoparticles were prepared by homogenization, using biodegradable casein or gum arabic as an encapsulating material. The encapsulation efficiency (EE), morphology, long-term stability, particle size, polydispersity index, zeta potential, pH, apparent viscosity, color parameters, total carotenoids, and antioxidant activity were determined. All nanoparticles methods produced spherical nanoparticles with EE higher than 85%. Highly homogeneous small particles (<300 nm) showing a tendency toward a yellow color were observed after 60 days of storage at 4 °C. The nanoparticles showed a carotenoid retention index higher than 40% and an antioxidant activity higher than 1,000 µM Trolox/g oil. The bioactive nanoparticles retained the carotenoids and are proposed as a green innovative product to replace synthetic colorants and antioxidants in foodstuffs.


Assuntos
Nanopartículas , Petróleo , Antioxidantes , Carotenoides , Óleo de Palmeira
2.
Food Chem ; 365: 130446, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34218103

RESUMO

A variety of methods for producing cassava flour exist, resulting in very heterogeneous products that exhibit various colours, textures, granulometries, and flavours. To improve its attractiveness to consumers, some producers dye cassava flour with turmeric or tartrazine; however, this practice is illegal in Brazil. In this study, cassava flour samples were collected and evaluated for possible adulteration by the addition of dyes. Flours were analysed by CIELab and dye screening (paper chromatography and the turmeric-identification method) and a classification tree was developed using these data. Positive results for curcuminoid pigments or tartrazine were confirmed by HPLC-DAD or HPLC-UV-Vis, respectively. The developed approach is an innovative alternative chemometric-analysis method that facilitates highly practical screening; adulterated cassava flour, a product of great human-food importance, can be identified using CIELab parameters.


Assuntos
Farinha , Manihot , Cromatografia Líquida de Alta Pressão , Corantes , Farinha/análise , Humanos , Controle de Qualidade
3.
Food Chem ; 346: 128742, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373823

RESUMO

The use of poly-ß-hydroxybutyrate (PHB) is an alternative polymer that can be considered environment friendly and renewable to prepare nanoparticles of carotenoids. This study aimed to develop and characterize aqueous dispersion nanoparticles and lyophilized nanoparticles of carotenoid extract obtained from Spirulina sp. LEB 18 by nanoprecipitation, using poly d,l-lactic acid (PLA)/poly d,l-lactic-co-glycolic acid (PLGA) (75:25 w/w) or PHB as encapsulants. The samples were characterized for the particle size, polydispersity index, zeta potential, apparent viscosity, pH, color parameters, ultraviolet-visible (UV/Vis) spectrophotometry, carotenoid profile, encapsulation efficiency, morphology, and thermal analysis. Nanoparticles containing microalgae carotenoid extract showed average particle diameter on a nanoscale (<200 nm), high homogeneity and stability, high thermal stability, and encapsulation efficiency carotenoid (>80%) when compared to nanoparticles containing ß-carotene synthetic. PHB or PLA/PLGA as encapsulating material in the production of nanoparticles from microalgae carotenoids can be a polymeric alternative capable of promoting greater stability and application of carotenoids.


Assuntos
Carotenoides/farmacologia , Hidroxibutiratos/química , Nanopartículas/química , Poliésteres/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Spirulina/química , beta Caroteno/química , Carotenoides/isolamento & purificação , Portadores de Fármacos/química , Excipientes , Tamanho da Partícula
4.
ScientificWorldJournal ; 2019: 5698089, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30853863

RESUMO

This study aims to characterize the physicochemical properties of cocoa's residual honey and evaluate its fermentative capacity as a substrate, using Saccharomyces cerevisiae AWRI726 as the starter culture for alcoholic fermentation. The research hypothesis was that cocoa's residual honey can be used for the production of fermented beverages. Cocoa's honey has 14.14 g.100 mL-1 of dry material, containing 11.80 g.100 mL-1 of carbohydrates and 1.20% crude protein, in addition to other minor components, such as pectin, lipids, and Fe, Mn, Na, and Zn, with a carbon-to-nitrogen (C/N) ratio (9.8) most suitable for fermentation. Fermentation at 20°C for 240 hours produced a liquid with 16% v/v ethanol (14 g.L-1 in 144 h). However, 24 hours of fermentation produced the maximum ethanol yield (0.373 g.g-1) and volumetric productivity (0.168 g.L-1.h-1), which were associated with a significant increase in the specific cell growth rate. Saccharomyces cerevisiae AWR1726 performed satisfactorily in the alcoholic fermentation of cocoa's residual honey, similar to that observed in other fruit beverages, thus suggesting the suitability of cocoa's residual honey for future commercial applications.


Assuntos
Cacau/metabolismo , Fermentação , Saccharomyces cerevisiae/metabolismo , Cacau/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...