Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2027): 20240622, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043240

RESUMO

The diversity of cephalic morphologies in mandibulates (myriapods and pancrustaceans) was key to their evolutionary success. A group of Cambrian bivalved arthropods called hymenocarines exhibit diagnostic mandibulate traits that illustrate this diversity, but many forms are still poorly known. These include the odaraiids, typified by Odaraia alata from the Burgess Shale (Wuliuan), characterized by its unique tubular carapace and rudder-like tail fan, and one of the largest Cambrian euarthropods at nearly 20 cm in length. Unfortunately, odaraiid cephalic anatomy has been largely unknown, limiting evolutionary scenarios and putting their mandibulate affinities into question. Here, we reinvestigate Odaraia based on new specimens from the Burgess Shale and describe exquisitely preserved mandibles with teeth and adjacent structures: a hypostome, maxillae and potential paragnaths. These structures can be homologized with those of Cambrian fuxianhuiids and extant mandibulates, and suggest that the ancestral mandibulate head could have had a limbless segment but retained its plasticity, allowing for limb re-expression within Pancrustacea. Furthermore, we show the presence of limbs with spinose endites which created a suspension-feeding structure. This discovery provides morphological evidence for suspension feeding among large Cambrian euarthropods and evinces the increasing exploitation of planktonic resources in Cambrian pelagic food webs.


Assuntos
Evolução Biológica , Fósseis , Animais , Fósseis/anatomia & histologia , Artrópodes/anatomia & histologia , Mandíbula/anatomia & histologia , Comportamento Alimentar , Filogenia
2.
R Soc Open Sci ; 9(12): 220933, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36483757

RESUMO

The origin of mandibulates, the hyperdiverse arthropod group that includes pancrustaceans and myriapods, dates back to the Cambrian. Bivalved arthropod groups such as hymenocarines have been argued to be early mandibulates, but many species are still poorly known, and their affinities remain uncertain. One of the most common and globally distributed Cambrian bivalved arthropods is Tuzoia. Originally described in 1912 from the Burgess Shale based on isolated carapaces, its full anatomy has remained largely unknown. Here, we describe new specimens of Tuzoia from the Canadian Burgess Shale (Wuliuan, Cambrian) showcasing exceptionally preserved soft tissues, allowing for the first comprehensive reconstruction of its anatomy, ecology and evolutionary affinities. The head bears antennae and differentiated cephalic appendages. The body is divided into a cephalothorax, a homonomous trunk bearing ca 10 pairs of legs with heptopodomerous endopods and enlarged basipods, and a tail fan with two pairs of caudal rami. These traits suggest that Tuzoia swam along the seafloor and used its spinose legs for predation or scavenging. Tuzoia is retrieved by a Bayesian phylogenetic analysis as an early mandibulate hymenocarine lineage, exemplifying the rapid diversification of this group in open marine environments during the Cambrian Explosion.

3.
iScience ; 25(7): 104675, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35845166

RESUMO

The origin of mandibulate arthropods can be traced back to the Cambrian period to several carapace-bearing arthropod groups, but their morphological diversity is still not well characterized. Here, we describe Balhuticaris voltae, a bivalved arthropod from the 506-million-year-old Burgess Shale (Marble Canyon, British Columbia, Canada). This species has an extremely elongated and multisegmented body bearing ca. 110 pairs of homonomous biramous limbs, the highest number among Cambrian arthropods, and, at 245 mm, it represents one of the largest Cambrian arthropods known. Its unusual carapace resembles an arch; it covers only the frontalmost section of the body but extends ventrally beyond the legs. Balhuticaris had a complex sensory system and was probably an active swimmer thanks to its powerful paddle-shaped exopods and a long and flexible body. Balhuticaris increases the ecological and functional diversity of bivalved arthropods and suggests that cases of gigantism occurred in more arthropod groups than previously recognized.

4.
R Soc Open Sci ; 7(1): 192111, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32218985

RESUMO

[This corrects the article DOI: 10.1098/rsos.191350.].

5.
R Soc Open Sci ; 6(11): 191350, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31827867

RESUMO

The origin of the arthropod carapace, an enlargement of cephalic tergites, can be traced back to the Cambrian period. However, its disparity and evolution are still not fully understood. Here, we describe a new 'bivalved' arthropod, Fibulacaris nereidis gen. et sp. nov., based on 102 specimens from the middle Cambrian (Wuliuan Stage) Burgess Shale, Marble Canyon area in British Columbia's Kootenay National Park, Canada. The laterally compressed carapace covers most of the body. It is fused dorsally and merges anteriorly into a conspicuous postero-ventrally recurved rostrum as long as the carapace and positioned between a pair of backwards-facing pedunculate eyes. The body is homonomous, with approximately 40 weakly sclerotized segments bearing biramous legs with elongate endopods, and ends in a pair of small flap-like caudal rami. Fibulacaris nereidis is interpreted as a suspension feeder possibly swimming inverted, in a potential case of convergence with some branchiopods. A Bayesian phylogenetic analysis places it within a group closely related to the extinct Hymenocarina. Fibulacaris nereidis is unique in its carapace morphology and overall widens the ecological disparity of Cambrian arthropods and suggests that the evolution of a 'bivalved' carapace and an upside-down lifestyle may have occurred early in stem-group crustaceans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...