Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 98(8): 1347-60, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15271511

RESUMO

The partially hydrophilic and hydrophobic tripodal ligands, tris(hydroxy-2-benzimidazolylmethyl)amine L1h and tris(2-benzimidazolyl)amine L1 were used for the preparation of biomimetic complex of carbonic anhydrase. The CO(2) hydration using [L1hZn(OH)]ClO(4).1.5H(2)O provided the zinc-bound and free HCO(3)(-)s, which were formed by nucleophilic attack of Zn-OH toward CO(2) in dimethyl sulfoxide (DMSO). The phenolic OH in L1h can recognize water molecules through hydrogen bonds to facilitate the collection of the water molecules around a biomimetic zinc compound; the molecular structure of [L1hZn(OH)](+) was revealed. The packing diagram has demonstrated the all the water molecules are hydrogen bonded to each phenolic OH. The nucleophilic attack of zinc-bound OH(-) to substrate is used to catalyze the CO(2) hydration and phosphoester hydrolysis. The carbonic anhydrase model compound [L1Zn(OH(2))](2+) was applied for the hydrolysis of phosphoesters, parathion and bis(p-nitrophenyl)phosphate (BNPP(-)). The low reactivity of [L1Zn(OH)](+) for parathion hydrolysis is attributed to the stability of the intermediate [L1Zn(OP(S)(OEt)(2))](+). Since the structures of the intermediates [L1Zn(OH(2))](BNPP)(2) (1) and [L1Zn(OP(S)(OEt)(2))]ClO(4) (2) formed on the way of hydrolysis are too stable to realize the catalytic cycle and are not active for hydrolysis, carbonic anhydrase model compound [L1Zn(OH(2))](2+) was not suitable for phosphoester hydrolysis; the zinc model compound surrounded by three benzimidazolyl groups is used to have the steric hindrance for bulky substrate, such as parathion and BNPP(-).


Assuntos
Dióxido de Carbono/química , Anidrases Carbônicas/química , Água/química , Compostos de Zinco/química , Sítios de Ligação , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Hidrólise , Espectroscopia de Ressonância Magnética , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...