Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(1): 017701, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35061474

RESUMO

We propose a nanoscale rotor embedded between two ferromagnetic electrodes that is driven by spin injection. The spin-rotation coupling allows this nanorotor to continuously receive angular momentum from an injected spin under steady current flow between ferromagnetic electrodes in an antiparallel magnetization configuration. We develop a quantum theory of this angular-momentum transfer and show that a relaxation process from a precession state into a sleeping top state is crucial for the efficient driving of the nanorotor by solving the master equation. Our work clarifies a general strategy for efficient driving of a nanorotor.

2.
Top Curr Chem (Cham) ; 375(1): 7, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28032245

RESUMO

In this article, we overview our recent theoretical works on electronic and optical properties of carbon nanotubes by going from the background to the perspectives. Electronic Raman spectra of metallic carbon nanotubes give a new picture of Raman processes. Thermoelectricity of semiconducting nanotubes gives a general concept of the confinement effect on the thermoelectric power factor. Selective excitation of only a single phonon mode is proposed by the pulsed train technique of coherent phonon spectroscopy. Occurrence of both two and four fold degeneracy in the carbon nanotube quantum dot is explained by difference group velocities and the intra/inter valley scattering near the hexagonal corner of the Brillouin zone.

3.
Phys Rev Lett ; 110(1): 016803, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23383822

RESUMO

We investigate two- and three-electron spin blockade in three vertical quantum dots (QDs) coupled in series. Two-electron spin blockade is found in a region where sequential tunneling through all QDs is forbidden but tunneling involving virtual hopping through an empty QD is allowed. It is observed only for the hole cycle with a distinct bias threshold for access to the triplet state. Three-electron spin blockade involving the quadruplet state is observed for nonequibilium conditions where sequential tunneling is allowed and the triplet state is accessible. Our results shine light on the importance of the nonequibilium conditions to obtain sufficient population of triplet and quadruplet states necessary for spin blockade.

5.
Phys Rev Lett ; 87(21): 216803, 2001 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-11736363

RESUMO

Tunneling conductance through a quantum dot is calculated around the local spin singlet-triplet crossover region including the Kondo effect. The calculation is carried out using the numerical renormalization group method. When the potential on the dot deepens, two electrons filling a lower energy orbital redistribute to gain Hund's coupling energy. This redistribution induces a bump in the conductance between the Coulomb peaks. The Kondo temperature on the bump is high due to the fluctuation on the singlet-triplet crossover region. The behaviors agree well with recent experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...