Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36829829

RESUMO

Mitochondria are targets of cold ischemia-reperfusion (IR), the major cause of cell damage during static cold preservation of liver allografts. The bioactivity of methane (CH4) has recently been recognized in various hypoxic and IR conditions as having influence on many aspects of mitochondrial biology. We therefore hypothesized that cold storage of liver grafts in CH4-enriched preservation solution can provide an increased defence against organ dysfunction in a preclinical rat model of liver transplantation. Livers were preserved for 24 h in cold histidine-tryptophan-ketoglutarate (HTK) or CH4-enriched HTK solution (HTK-CH4) (n = 24 each); then, viability parameters were monitored for 60 min during normothermic isolated reperfusion and perfusate and liver tissue were collected. The oxidative phosphorylation capacity and extramitochondrial Ca2+ movement were measured by high resolution respirometry. Oxygen and glucose consumption increased significantly while hepatocellular damage was decreased in the HTK-CH4 grafts compared to the HTK group. Mitochondrial oxidative phosphorylation capacity was more preserved (128.8 ± 31.5 pmol/s/mL vs 201.3 ± 54.8 pmol/s/mL) and a significantly higher Ca2+ flux was detected in HTK-CH4 storage (2.9 ± 0.1 mV/s) compared to HTK (2.3 ± 0.09 mV/s). These results demonstrate the direct effect of CH4 on hepatic mitochondrial function and extramitochondrial Ca2+ fluxes, which may have contributed to improved graft functions and a preserved histomorphology after cold IR.

2.
Drug Des Devel Ther ; 12: 1917-1930, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29983546

RESUMO

PURPOSE: Since electroporation (EP) can increase the permeability of biological membranes, we hypothesized that it offers an opportunity to enhance the transdermal delivery of drugs for intra-articular indications. Our aim was to compare the anti-inflammatory and analgesic efficacy of EP-combined topical administration of diclofenac sodium hydrogel (50 mg mL-1 in 230 µL volume) with that of an equivalent dose of oral (75 mg kg-1) and simple topical administration. METHODS: Arthritis was induced with the injection of 2% λ-carrageenan and 4% kaolin into the right knee joints of male Sprague Dawley rats. EP was applied for 8 min with 900 V high-voltage pulses for 5 ms followed by a 20 ms break. Drug penetration into the synovial fluid and plasma was detected by high-performance liquid chromatography. Leukocyte-endothelial interactions were visualized by intravital videomicroscopy on the internal surface of the synovium. Inflammation-induced thermal and mechanical hyperalgesia reactions, knee joint edema, and inflammatory enzyme activities were assessed at 24 and 48 h after arthritis induction. RESULTS: EP significantly increased the plasma level of diclofenac as compared with the topical controls 10 min after the 2% λ-carrageenan and 4% kaolin injection. Increased leukocyte-endothelial interactions were accompanied by joint inflammation, which was significantly reduced by oral and EP diclofenac (by 45% and by 30%, respectively) and only slightly ameliorated by simple topical diclofenac treatment (by 18%). The arthritis-related secondary hyperalgesic reactions were significantly ameliorated by oral and EP-enhanced topical diclofenac treatments. The knee cross-section area (which increased by 35%) was also reduced with both approaches. However, simple topical application did not influence the development of joint edema and secondary hyperalgesia. CONCLUSION: The study provides evidence for the first time of the potent anti-inflammatory and analgesic effects of EP-enhanced topical diclofenac during arthritis. The therapeutic benefit provided by EP is comparable with that of oral diclofenac; EP is a useful alternative to conventional routes of administration.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Artrite Experimental/tratamento farmacológico , Diclofenaco/administração & dosagem , Eletroquimioterapia , Articulação do Joelho/efeitos dos fármacos , Administração Cutânea , Animais , Comunicação Celular , Citocinas/biossíntese , Diclofenaco/efeitos adversos , Diclofenaco/farmacocinética , Masculino , Peroxidase/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...