Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(9): e202216220, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36591907

RESUMO

Enzymatic degradation and recycling can reduce the environmental impact of plastics. Despite decades of research, no enzymes for the efficient hydrolysis of polyurethanes have been reported. Whereas the hydrolysis of the ester bonds in polyester-polyurethanes by cutinases is known, the urethane bonds in polyether-polyurethanes have remained inaccessible to biocatalytic hydrolysis. Here we report the discovery of urethanases from a metagenome library constructed from soil that had been exposed to polyurethane waste for many years. We then demonstrate the use of a urethanase in a chemoenzymatic process for polyurethane foam recycling. The urethanase hydrolyses low molecular weight dicarbamates resulting from chemical glycolysis of polyether-polyurethane foam, making this strategy broadly applicable to diverse polyether-polyurethane wastes.


Assuntos
Carbamatos , Poliuretanos , Poliuretanos/química , Hidrólise , Peso Molecular , Reciclagem , Biodegradação Ambiental
2.
Microbiology (Reading) ; 166(11): 1025-1037, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33095135

RESUMO

Microbial bioproduction of the aromatic acid anthranilate (ortho-aminobenzoate) has the potential to replace its current, environmentally demanding production process. The host organism employed for such a process needs to fulfil certain demands to achieve industrially relevant product levels. As anthranilate is toxic for microorganisms, the use of particularly robust production hosts can overcome issues from product inhibition. The microorganisms Corynebacterium glutamicum and Pseudomonas putida are known for high tolerance towards a variety of chemicals and could serve as promising platform strains. In this study, the resistance of both wild-type strains towards anthranilate was assessed. To further enhance their native tolerance, adaptive laboratory evolution (ALE) was applied. Sequential batch fermentation processes were developed, adapted to the cultivation demands for C. glutamicum and P. putida, to enable long-term cultivation in the presence of anthranilate. Isolation and analysis of single mutants revealed phenotypes with improved growth behaviour in the presence of anthranilate for both strains. The characterization and improvement of both potential hosts provide an important basis for further process optimization and will aid the establishment of an industrially competitive method for microbial synthesis of anthranilate.


Assuntos
Corynebacterium glutamicum/metabolismo , Pseudomonas putida/metabolismo , ortoaminobenzoatos/metabolismo , Adaptação Fisiológica , Reatores Biológicos , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crescimento & desenvolvimento , Evolução Molecular Direcionada , Microbiologia Industrial , Mutação , Pseudomonas putida/genética , Pseudomonas putida/crescimento & desenvolvimento
3.
Front Microbiol ; 6: 1310, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635771

RESUMO

The Pseudomonas putida KT2440 strain was engineered in order to produce anthranilate (oAB, ortho-aminobenzoate), a precursor of the aromatic amino acid tryptophan, from glucose as sole carbon source. To enable the production of the metabolic intermediate oAB, the trpDC operon encoding an anthranilate phosphoribosyltransferase (TrpD) and an indole-3-glycerol phosphate synthase (TrpC), were deleted. In addition, the chorismate mutase (pheA) responsible for the conversion of chorismate over prephenate to phenylpyruvate was deleted in the background of the deletion of trpDC to circumvent a potential drain of precursor. To further increase the oAB production, a feedback insensitive version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase encoded by the aroG (D146N) gene and an anthranilate synthase (trpE (S40F) G) were overexpressed separately and simultaneously in the deletion mutants. With optimized production conditions in a tryptophan-limited fed-batch process a maximum of 1.54 ± 0.3 g L(-1) (11.23 mM) oAB was obtained with the best performing engineered P. putida KT2440 strain (P. putida ΔtrpDC pSEVA234_aroG (D146N) _trpE (S40F) G).

4.
Biotechnol J ; 7(9): 1122-36, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22829529

RESUMO

Naturally occurring lignocellulose can be used as a renewable resource for the sustainable production of platform chemicals that can in turn be converted to valuable fine chemicals, polymers, and fuels. The biocatalytic conversion of lignocellulose is a very promising approach due to its high selectivity, mild conditions, and low exergy loss. However, such biocatalytic processes are still seldom applied at the industrial scale since the single conversion steps (pretreatment, hydrolysis, and fermentation) may exhibit low conversion rates, low efficiencies, or high costs. The biocatalytic conversion of lignocellulose to platform chemicals is reviewed in this work. Structures and production rates of lignocellulose are described, and platform chemicals that may be produced from lignocellulose are summarized. Biocatalytic conversion of lignocellulose is distinguished from conventional non-selective approaches. All essential conversion steps used in biocatalytic approaches (pretreatment, hydrolysis, and fermentation) are reviewed in detail. Finally, potential interactions between these conversion steps are highlighted and the advantages as well as disadvantages of integrated process configurations are elucidated. In conclusion, a comprehensive understanding of the biocatalytic conversion of lignocellulose is provided in this review.


Assuntos
Biocatálise , Biotecnologia/métodos , Lignina/química , Compostos Orgânicos/química , Bioengenharia , Fermentação , Hidrólise , Lignina/metabolismo , Compostos Orgânicos/metabolismo
5.
Microb Cell Fact ; 11: 43, 2012 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-22480369

RESUMO

BACKGROUND: In the last years, the biotechnological production of platform chemicals for fuel components has become a major focus of interest. Although ligno-cellulosic material is considered as suitable feedstock, the almost inevitable pretreatment of this recalcitrant material may interfere with the subsequent fermentation steps. In this study, the fungus Ustilago maydis was used to produce itaconic acid as platform chemical for the synthesis of potential biofuels such as 3-methyltetrahydrofuran. No studies, however, have investigated how pretreatment of ligno-cellulosic biomass precisely influences the subsequent fermentation by U. maydis. Thus, this current study aims to first characterize U. maydis in shake flasks and then to evaluate the influence of three exemplary pretreatment methods on the cultivation and itaconic acid production of this fungus. Cellulose enzymatically hydrolysed in seawater and salt-assisted organic-acid catalysed cellulose were investigated as substrates. Lastly, hydrolysed hemicellulose from fractionated beech wood was applied as substrate. RESULTS: U. maydis was characterized on shake flask level regarding its itaconic acid production on glucose. Nitrogen limitation was shown to be a crucial condition for the production of itaconic acid. For itaconic acid concentrations above 25 g/L, a significant product inhibition was observed. Performing experiments that simulated influences of possible pretreatment methods, U. maydis was only slightly affected by high osmolarities up to 3.5 osmol/L as well as of 0.1 M oxalic acid. The production of itaconic acid was achieved on pretreated cellulose in seawater and on the hydrolysed hemicellulosic fraction of pretreated beech wood. CONCLUSION: The fungus U. maydis is a promising producer of itaconic acid, since it grows as single cells (yeast-like) in submerged cultivations and it is extremely robust in high osmotic media and real seawater. Moreover, U. maydis can grow on the hemicellulosic fraction of pretreated beech wood. Thereby, this fungus combines important advantages of yeasts and filamentous fungi. Nevertheless, the biomass pretreatment does indeed affect the subsequent itaconic acid production. Although U. maydis is insusceptible to most possible impurities from pretreatment, high amounts of salts or residues of organic acids can slow microbial growth and decrease the production. Consequently, the pretreatment step needs to fit the prerequisites defined by the actual microorganisms applied for fermentation.


Assuntos
Biomassa , Succinatos/metabolismo , Ustilago/metabolismo , Biodegradação Ambiental , Biotecnologia , Celulose/metabolismo , Fermentação , Hidrólise
6.
Biotechnol Biofuels ; 4(1): 33, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21943248

RESUMO

BACKGROUND: In order to generate biofuels, insoluble cellulosic substrates are pretreated and subsequently hydrolyzed with cellulases. One way to pretreat cellulose in a safe and environmentally friendly manner is to apply, under mild conditions, non-hydrolyzing proteins such as swollenin - naturally produced in low yields by the fungus Trichoderma reesei. To yield sufficient swollenin for industrial applications, the first aim of this study is to present a new way of producing recombinant swollenin. The main objective is to show how swollenin quantitatively affects relevant physical properties of cellulosic substrates and how it affects subsequent hydrolysis. RESULTS: After expression in the yeast Kluyveromyces lactis, the resulting swollenin was purified. The adsorption parameters of the recombinant swollenin onto cellulose were quantified for the first time and were comparable to those of individual cellulases from T. reesei. Four different insoluble cellulosic substrates were then pretreated with swollenin. At first, it could be qualitatively shown by macroscopic evaluation and microscopy that swollenin caused deagglomeration of bigger cellulose agglomerates as well as dispersion of cellulose microfibrils (amorphogenesis). Afterwards, the effects of swollenin on cellulose particle size, maximum cellulase adsorption and cellulose crystallinity were quantified. The pretreatment with swollenin resulted in a significant decrease in particle size of the cellulosic substrates as well as in their crystallinity, thereby substantially increasing maximum cellulase adsorption onto these substrates. Subsequently, the pretreated cellulosic substrates were hydrolyzed with cellulases. Here, pretreatment of cellulosic substrates with swollenin, even in non-saturating concentrations, significantly accelerated the hydrolysis. By correlating particle size and crystallinity of the cellulosic substrates with initial hydrolysis rates, it could be shown that the swollenin-induced reduction in particle size and crystallinity resulted in high cellulose hydrolysis rates. CONCLUSIONS: Recombinant swollenin can be easily produced with the robust yeast K. lactis. Moreover, swollenin induces deagglomeration of cellulose agglomerates as well as amorphogenesis (decrystallization). For the first time, this study quantifies and elucidates in detail how swollenin affects different cellulosic substrates and their hydrolysis.

7.
Biotechnol Prog ; 27(2): 555-61, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21302369

RESUMO

New screening techniques for improved enzyme variants in turbid media are urgently required in many industries such as the detergent and food industry. Here, a new method is presented to measure enzyme activity in different types of substrate suspensions. This method allows a semiquantitative determination of protease activity using native protein substrates. Unlike conventional techniques for measurement of enzyme activity, the BioLector technology enables online monitoring of scattered light intensity and fluorescence signals during the continuous shaking of samples in microtiter plates. The BioLector technique is hereby used to monitor the hydrolysis of an insoluble protein substrate by measuring the decrease of scattered light. The kinetic parameters for the enzyme reaction (V(max,app) and K(m,app)) are determined from the scattered light curves. Moreover, the influence of pH on the protease activity is investigated. The optimal pH value for protease activity was determined to be between pH 8 to 11 and the activities of five subtilisin serine proteases with variations in the amino acid sequence were compared. The presented method enables proteases from genetically modified strains to be easily characterized and compared. Moreover, this method can be applied to other enzyme systems that catalyze various reactions such as cellulose decomposition.


Assuntos
Cinética , Nefelometria e Turbidimetria/métodos , Peptídeo Hidrolases/metabolismo , Suspensões/química , Enzimas/metabolismo , Luz , Fragmentos de Peptídeos/análise , Proteínas/análise , Espalhamento de Radiação , Serina Proteases/metabolismo , Solubilidade
8.
Biotechnol J ; 6(1): 74-85, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21184439

RESUMO

A new prospective cellulase assay simultaneously combining high-throughput, online analysis and insoluble cellulosic substrates is described. The hydrolysis of three different insoluble cellulosic substrates, catalysed by a commercial cellulase preparation from Trichoderma reesei (Celluclast), was monitored using the BioLector - allowing online monitoring of scattered light intensities in a continuously shaken microtiter plate. Cellulase activities could be quantitatively assayed using the BioLector. At low cellulase/cellulose ratios, the Michaelis-Menten parameters of the cellulase mixture were mainly affected by the crystallinity index of the cellulose. Here, the apparent maximum cellulase activities inversely correlated with the crystallinity index of the cellulose. At high cellulase/cellulose ratios the particle size of the cellulose, defining the external surface area accessible to the cellulases, was the key determining factor for cellulase activity. The developed technique was also successfully applied to evaluate the pH optimum of cellulases. Moreover, the non-hydrolytic deagglomeration of cellulose particles was investigated, for the first time, using high-throughput scattered light detection. In conclusion, this cellulase assay ideally links high-throughput, online analysis and realistic insoluble cellulosic substrates in one simple system. It will considerably simplify and accelerate fundamental research on cellulase screening.


Assuntos
Biocombustíveis , Celulase/metabolismo , Celulose/metabolismo , Biotecnologia , Concentração de Íons de Hidrogênio , Hidrólise , Trichoderma/enzimologia
9.
Biotechnol Biofuels ; 3: 18, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20718965

RESUMO

BACKGROUND: It is important to generate biofuels and society must be weaned from its dependency on fossil fuels. In order to produce biofuels, lignocellulose is pretreated and the resulting cellulose is hydrolyzed by cellulases such as cellobiohydrolases (CBH) and endoglucanases (EG). Until now, the biofuel industry has usually applied impractical celluloses to screen for cellulases capable of degrading naturally occurring, insoluble cellulose. This study investigates how these cellulases adsorb and hydrolyze insoluble α-cellulose - considered to be a more practical substrate which mimics the alkaline-pretreated biomass used in biorefineries. Moreover, this study investigates how hydrodynamics affects cellulase adsorption and activity onto α-cellulose. RESULTS: First, the cellulases CBH I, CBH II, EG I and EG II were purified from Trichoderma reesei and CBH I and EG I were utilized in order to study and model the adsorption isotherms (Langmuir) and kinetics (pseudo-first-order). Second, the adsorption kinetics and cellulase activities were studied under different hydrodynamic conditions, including liquid mixing and particle suspension. Third, in order to compare α-cellulose with three typically used celluloses, the exact cellulase activities towards all four substrates were measured.It was found that, using α-cellulose, the adsorption models fitted to the experimental data and yielded parameters comparable to those for filter paper. Moreover, it was determined that higher shaking frequencies clearly improved the adsorption of cellulases onto α-cellulose and thus bolstered their activity. Complete suspension of α-cellulose particles was the optimal operating condition in order to ensure efficient cellulase adsorption and activity. Finally, all four purified cellulases displayed comparable activities only on insoluble α-cellulose. CONCLUSIONS: α-Cellulose is an excellent substrate to screen for CBHs and EGs. This current investigation shows in detail, for the first time, the adsorption of purified cellulases onto α-cellulose, the effect of hydrodynamics on cellulase adsorption and the correlation between the adsorption and the activity of cellulases at different hydrodynamic conditions. Complete suspension of the substrate has to be ensured in order to optimize the cellulase attack. In the future, screenings should be conducted with α-cellulose so that proper cellulases are selected to best hydrolyze the real alkaline-pretreated biomass used in biorefineries.

10.
Curr Pharm Des ; 15(23): 2693-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19689339

RESUMO

Certain characteristics of tumor cells make it possible to develop rational strategies for targeting tumors without harming normal cells. These include the presence of cell surface molecules that characterize the current state of the tumor (e.g. CD30 on Hodgkin lymphoma cells) and the genetic and epigenetic changes that activate oncogenes and inactivate tumor suppressor genes (e.g. the inactivation of tumor suppressor gene DAPK2 in Hodgkin lymphoma cells, which blocks apoptosis). We have developed a novel tumor-targeting fusion protein by combining a selective ligand (CD30L) with a constitutively active version of DAPK2 (DAPK2'-CD30L), thus increasing tumor specificity and reducing systemic toxicity. We showed that this immunokinase fusion protein induces apoptosis specifically in CD30(+)/DAPK2(-) tumor cells in vitro and significantly prolonged overall survival in a disseminated Hodgkin lymphoma xenograft SCID mouse model. Therapeutic strategies based on the cell-specific restoration of a defective, tumor-suppressing kinase demonstrate the feasibility of targeted therapy using recombinant immunokinases.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Doença de Hodgkin/tratamento farmacológico , Imunotoxinas/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/imunologia , Proteínas Reguladoras de Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/uso terapêutico , Proteínas Quinases Dependentes de Cálcio-Calmodulina/imunologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/uso terapêutico , Linhagem Celular Tumoral , Proteínas Quinases Associadas com Morte Celular , Humanos , Antígeno Ki-1/imunologia , Camundongos , Camundongos SCID , Modelos Biológicos , Proteínas Recombinantes de Fusão/biossíntese
11.
J Immunother ; 32(5): 431-41, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19609235

RESUMO

Death-associated protein kinase 2 (DAPK2) is a calcium/calmodulin-regulated proapoptotic serine/threonine kinase that acts as a tumor suppressor. Here we show that DAPK2 is down-regulated in Hodgkin lymphoma-derived tumor cell lines and that promoter-region hypermethylation is one mechanism for DAPK2 inactivation. To determine whether selective reconstitution of DAPK2 catalytic activity in these cells could induce apoptosis, we created a fusion protein comprising a human CD30 ligand conjugated to a human DAPK2 calmodulin-deletion mutant. Thus, recombinant immunokinase DAPK2'-CD30L has a constitutive kinase activity with enhanced proapoptotic function. We show that this immunokinase fusion protein inhibits cell proliferation and induces apoptotic cell death specifically in CD30/DAPK2-negative tumor cell lines. This proof-of-concept study provides the first demonstration of therapeutic strategies based on the restoration of a defective, tumor-suppressing kinase activity by a novel class of recombinant immunotherapeutics.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Ligante CD30/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Doença de Hodgkin/imunologia , Imunoterapia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Apoptose/genética , Apoptose/imunologia , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Ligante CD30/genética , Ligante CD30/imunologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Proteínas Quinases Associadas com Morte Celular , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Doença de Hodgkin/enzimologia , Doença de Hodgkin/genética , Doença de Hodgkin/patologia , Doença de Hodgkin/terapia , Humanos , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...