Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37115844

RESUMO

This work presents a beamforming procedure that significantly reduces the number of operations when performing volumetric synthetic aperture imaging with row-column addressed arrays (RCAs). The proposed beamformer uses that the image values along the elevation direction of the low-resolution volume (LRV) are approximately constant. It is thus hypothesized that the entire LRV could be reconstructed from a single 2-D cross section of the LRV. The presented method contains two stages. The first stage beamforms, for each emission, a cross section using the conventional RCA beamformer. The second stage extrapolates the rest of the image points in the volume from the 2-D cross sections. Assuming the image volume is covered by 3-D grid coordinates with a size of Nw×Nw ×Nz , i.e., Nw samples along the x - and y -axis and Nz samples along the z -axis, the proposed beamformer reduces the number of mathematical operations by a factor of approximately NNw/(NS+Nw) . Here, S is the ratio between the first- and second-stage axial sampling rates, and N is the receiving aperture's number of channels. Beamforming a 128×128×1024 volume from data acquired with N = 128 receiving channel can thus be achieved with 25.6 times fewer operations, when S = 4. A 9.23 times increase in the beamforming rate for a 100×100×200 volume was demonstrated on complex data from a 128 + 128 Vermon RCA probe. Real-time volumetric beamformation can, with this increase, be performed with a pulse repetition frequency of up to 1804.80 Hz. The proposed and conventional beamformer's output was visually indistinguishable, and the full width at half maximum (FWHM) and full width at tenth maximum (FWTM) were at most 1.19% larger with the proposed approach. The proposed beamformer can thus perform volumetric imaging significantly faster than the current approach, with a negligible difference in image quality.


Assuntos
Algoritmos , Ultrassonografia/métodos , Imagens de Fantasmas
2.
Artigo em Inglês | MEDLINE | ID: mdl-37028315

RESUMO

This study presents a method for noninvasive pressure gradient estimation, which allows the detection of small pressure differences with higher precision compared to invasive catheters. It combines a new method for estimating the temporal acceleration of the flowing blood with the Navier-Stokes equation. The acceleration estimation is based on a double cross-correlation approach, which is hypothesized to minimize the influence of noise. Data are acquired using a 256-element, 6.5-MHz GE L3-12-D linear array transducer connected to a Verasonics research scanner. A synthetic aperture (SA) interleaved sequence with 2 ×12 virtual sources evenly distributed over the aperture and permuted in emission order is used in combination with recursive imaging. This enables a temporal resolution between correlation frames equal to the pulse repetition time at a frame rate of half the pulse repetition frequency. The accuracy of the method is evaluated against a computational fluid dynamic simulation. Here, the estimated total pressure difference complies with the CFD reference pressure difference, which yields an R -square of 0.985 and an RMSE of 3.03 Pa. The precision of the method is tested on experimental data, measured on a carotid phantom of the common carotid artery. The volume profile used during measurement was set to mimic flow in the carotid artery with a peak flow rate of 12.9 mL/s. The experimental setup showed that the measured pressure difference changes from -59.4 to 31 Pa throughout a single pulse cycle. This was estimated with a precision of 5.44% (3.22 Pa) across ten pulse cycles. The method was also compared to invasive catheter measurements in a phantom with a 60% cross-sectional area reduction. The ultrasound method detected a maximum pressure difference of 72.3 Pa with a precision of 3.3% (2.22 Pa). The catheters measured a maximum pressure difference of 105 Pa with a precision of 11.2% (11.4 Pa). This was measured over the same constriction and with a peak flow rate of 12.9 mL/s. The double cross-correlation approach revealed no improvement compared to a normal differential operator. The method's strength, thus, lies primarily in the ultrasound sequence, which allows precise and accurate velocity estimations, at which acceleration and pressure differences can be acquired.


Assuntos
Artérias Carótidas , Artéria Carótida Primitiva , Velocidade do Fluxo Sanguíneo , Artérias Carótidas/diagnóstico por imagem , Ultrassonografia/métodos , Artéria Carótida Primitiva/diagnóstico por imagem , Pressão , Pressão Sanguínea
3.
Ultrasonics ; 132: 106962, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36906961

RESUMO

Tensor velocity imaging (TVI) performance with a row-column probe was assessed for constant flow in a straight vessel phantom and pulsatile flow in a carotid artery phantom. TVI, i.e., estimating the 3-D velocity vector as a function of time and spatial position, was performed using the transverse oscillation cross-correlation estimator, and the flow was acquired with a Vermon 128+128 row-column array probe connected to a Verasonics 256 research scanner. The emission sequence used 16 emissions per image, and a TVI volume rate of 234 Hz was obtained for a pulse repetition frequency (fprf) of 15 kHz. The TVI was validated by comparing estimates of the flow rate through several cross-sections with the flow rate set by the pump. For the constant 8 mL/s flow in the straight vessel phantom with relative estimator bias (RB) and standards deviation (RSD) was found in the range of -2.18% to 0.55% and 4.58% to 2.48% in measurements performed with an fprf of 15, 10, 8, and 5 kHz. The pulsatile flow in the carotid artery phantom the was set to an average flow rate of 2.44 mL/s, and the flow was acquired with an fprf of 15, 10, and 8 kHz. The pulsatile flow was estimated from two measurement sites: one at a straight section of the artery and one at the bifurcation. In the straight section, the estimator predicted the average flow rate with an RB value ranging from -7.99% to 0.10% and an RSD value ranging from 10.76% to 6.97%. At the bifurcation, RB and RSD values were between -7.47% to 2.02% and 14.46% to 8.89%. This demonstrates that an RCA with 128 receive elements can accurately capture the flow rate through any cross-section at a high sampling rate.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35839193

RESUMO

Row-column (RC) arrays have the potential to yield full 3-D ultrasound imaging with a greatly reduced number of elements compared to fully populated arrays. They, however, have several challenges due to their special geometry. This review article summarizes the current literature for RC imaging and demonstrates that full anatomic and functional imaging can attain a high quality using synthetic aperture (SA) sequences and modified delay-and-sum beamforming. Resolution can approach the diffraction limit with an isotropic resolution of half a wavelength with low sidelobe levels, and the field of view can be expanded by using convex or lensed RC probes. GPU beamforming allows for three orthogonal planes to be beamformed at 30 Hz, providing near real-time imaging ideal for positioning the probe and improving the operator's workflow. Functional imaging is also attainable using transverse oscillation and dedicated SA sequence for tensor velocity imaging for revealing the full 3-D velocity vector as a function of spatial position and time for both blood velocity and tissue motion estimation. Using RC arrays with commercial contrast agents can reveal super-resolution imaging (SRI) with isotropic resolution below [Formula: see text]. RC arrays can, thus, yield full 3-D imaging at high resolution, contrast, and volumetric rates for both anatomic and functional imaging with the same number of receive channels as current commercial 1-D arrays.


Assuntos
Meios de Contraste , Movimento (Física) , Imagens de Fantasmas , Ultrassonografia/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-35133963

RESUMO

In this work, the accuracy of row-column tensor velocity imaging (TVI), i.e., 3-D vector flow imaging (VFI) in 3-D space over time, is quantified on a complex, clinically relevant flow. The quantification is achieved by transferring the flow simulated using computational fluid dynamics (CFD) to a Field II simulation environment, and this allows for a direct comparison between the actual and estimated velocities. The carotid bifurcation flow simulations were performed with a peak inlet velocity of 80 cm/s, nonrigid vessel walls, and a flow cycle duration of 1.2 s. The flow was simulated from two observation angles, and it was acquired using a 3-MHz 62+62 row-column addressed array (RCA) at a pulse repetition frequency ( fprf ) of 10 and 20 kHz. The tensor velocities were obtained at a frame rate of 208.3 Hz, at fprf = 10 kHz , and the results from two velocity estimators were compared. The two estimators were the directional transverse oscillation (TO) cross correlation estimator and the proposed autocorrelation estimator. Linear regression between the actual and estimated velocity components yielded, for the cross correlation estimator, an R 2 value in the range of 0.89-0.91, 0.46-0.77, and 0.91-0.97 for the x -, y -, and z -components, and 0.87-0.89, 0.40-0.83, and 0.91-0.96 when using the autocorrelation estimator. The results demonstrate that an RCA can, with just 62 receive channels, measure complex 3-D flow fields at a high volume rate.


Assuntos
Hidrodinâmica , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Artérias Carótidas/diagnóstico por imagem , Simulação por Computador , Ultrassonografia/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-33347407

RESUMO

This article presents a motion compensation procedure that significantly improves the accuracy of synthetic aperture tensor velocity estimates for row-column arrays. The proposed motion compensation scheme reduces motion effects by moving the image coordinates with the velocity field during summation of low-resolution volumes. The velocity field is estimated using a transverse oscillation cross-correlation estimator, and each image coordinate's local tensor velocity is determined by upsampling the field using spline interpolation. The motion compensation procedure is validated using Field II simulations and flow measurements acquired using a 3-MHz row-column addressed probe and the research scanner SARUS. For a peak velocity of 25 cm/s, a pulse repetition frequency of 2 kHz, and a beam-to-flow angle of 60°, the proposed motion compensation procedure was able to reduce the relative bias from -27.0% to -9.4% and the standard deviation from 8.6% to 8.1%. In simulations performed with a pulse repetition frequency of 10 kHz, the proposed method reduces the bias in all cases with beam-to-flow angles of 60° and 75° and peak velocities between 10 and 150 cm/s.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32804649

RESUMO

This article presents an imaging scheme capable of estimating the full 3-D velocity vector field in a volume using row-column addressed arrays (RCAs) at a high volume rate. A 62 + 62 RCA array is employed with an interleaved synthetic aperture sequence. It contains repeated emissions with rows and columns interleaved with B-mode emissions. The sequence contains 80 emissions in total and can provide continuous volumetric data at a volume rate above 125 Hz. A transverse oscillation cross correlation estimator determines all three velocity components. The approach is investigated using Field II simulations and measurements using a specially built 3-MHz 62 + 62 RCA array connected to the SARUS experimental scanner. Both the B-mode and flow sequences have a penetration depth of 14 cm when measured on a tissue-mimicking phantom (0.5-dB/[ [Formula: see text]] attenuation). Simulations of a parabolic flow in a 12-mm-diameter vessel at a depth of 30 mm, beam-to-flow angle of 90°, and xy-rotation of 45° gave a standard deviation (SD) of (3.3, 3.4, 0.4)% and bias of (-3.3, -3.9, -0.1)%, for ( vx , vy , and vz ). Decreasing the beam-to-flow angle to 60° gave an SD of (8.9, 9.1, 0.8)% and bias of (-7.6, -9.5, -7.2)%, showing a slight increase. Measurements were carried out using a similar setup, and pulsing at 2 kHz yielded comparable results at 90° with an SD of (5.8, 5.5, 1.1)% and bias of (1.4, -6.4, 2.4)%. At 60°, the SD was (5.2, 4.7 1.2)% and bias (-4.6, 6.9, -7.4)%. Results from measurements across all tested settings showed a maximum SD of 6.8% and a maximum bias of 15.8% for a peak velocity of 10 cm/s. A tissue-mimicking phantom with a straight vessel was used to introduce clutter, tissue motion, and pulsating flow. The pulsating velocity magnitude was estimated across ten pulse periods and yielded an SD of 10.9%. The method was capable of estimating transverse flow components precisely but underestimated the flow with small beam-to-flow angles. The sequence provided continuous data in both time and space throughout the volume, allowing for retrospective analysis of the flow. Moreover, B-mode planes can be selected retrospectively anywhere in the volume. This shows that tensor velocity imaging (full 3-D volumetric vector flow imaging) can be estimated in 4-D ( x, y, z, and t ) using only 62 channels in receive, making 4-D volumetric imaging implementable on current scanner hardware.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...