Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15237, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709852

RESUMO

Membrane fouling significantly reduces membrane permeability, leading to higher operational expenses. In situ monitoring of membrane fouling can potentially be used to reduce operation cost by optimizing operational parameters and cleaning conditions. In this study, a platinum wire with a diameter of 20 µm was attached to the surface of a ceramic ultrafiltration membrane, and by measuring the voltage across the wire while applying an AC current, the amplitude of the third harmonic wave, the so-called 3ω signal, was obtained. Results showed increasing 3ω signals during formation of fouling layers, which correlates directly to the hydraulic resistance of the formed fouling layer in semi-dead end filtration of polymeric core shell particles and crossflow filtration of diluted milk. This is explained by the insulating effect of the fouling layers which reduces heat convection by crossflow and the different thermal conductivity in the fouling layer compared with the feed. After membrane cleaning, the permeability and the magnitude of the 3ω signal were partly restored, showing that the 3ω method can be used to monitor the effect of cleaning. The frequency of the AC current was varied so it was possible to measure the heat conductivity in the fouling layer (high frequency) and heat convection due to cross-flow (low frequency). This may potentially be used to get information of the type of fouling (heat conductivity) and thickness of the fouling layer (AC frequency where heat conductivity becomes dominating).

2.
Membranes (Basel) ; 11(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34436402

RESUMO

Due to progressive limitation of access to clean drinkable water, it is nowadays a priority to find an effective method of water purification from those emerging organic contaminants, which might have potentially harmful and irreversible effects on living organisms and environment. This manuscript reports the development of a new strategy for water purification, which combines a novel and recently developed Al2O3-doped silica nanofiltration membrane with a thermocatalytic perovskite, namely cerium-doped strontium ferrate (CSF). The thermocatalytic activity of CSF offers the opportunity to degrade organic pollutants with no light and without input of chemical oxidants, providing simplicity of operation. Moreover, our studies on real samples of secondary effluent from wastewater treatment showed that the thermocatalyst has the ability to degrade also part of the non-toxic organic matter, which allows for reducing the chemical oxygen demand of the retentate and mitigating membrane fouling during filtration. Therefore, the new technology is effective in the production of clean feed and permeate and has a potential to be used in degradation of micropollutants in water treatment.

3.
Membranes (Basel) ; 11(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401452

RESUMO

Fouling of membranes is still an important limiting factor in the application of membrane technology. Therefore, there is still a need for an in-depth understanding of which parameters affect the (ir)removability of fouling layers, as well as the mechanisms behind fouling. In this study, fluid dynamic gauging (FDG) was used to investigate the influence of charge effects between negatively charged foulant particles and cations on cake cohesive strength. Fouling cakes' thicknesses and cohesive strengths were estimated during membrane operations, where microfiltration (MF) membranes were fouled in a feed-and-bleed cross-flow filtration system with low and highly negatively charged polystyrene-polyacrylic acid core-shell particles. In addition, an added procedure to determine the irremovability of cakes using FDG was also proposed. Comparing layers formed in the presence and absence of calcium ions revealed that layers formed without calcium ions had significantly lower cohesive strength than layers formed in the presence of calcium ions, which is explained by the bridging effect between negatively charged particles and calcium ions. Results also confirmed more cohesive cakes formed by high negative charge particles in the presence of calcium compared to lower negative charge particles. Hence, it was demonstrated that FDG can be used to assess the cohesive strength ((ir)removability) of cake layers, and to study how cake cohesive strength depends on foulant surface charge and ionic composition of the solution.

4.
Environ Technol ; 42(14): 2177-2186, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31750797

RESUMO

Nutrients were extracted from digester supernatant sampled from a full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plant. A four-compartment selectrodialysis setup was used to extract ammonium and phosphate in two separate compartments. The initial phosphate recovery rate was measured to be 0.072 mmol m-2 s-1 and the initial ammonium recovery rate was measured to be 1.31 mmol m-2 s-1. The ammonium recovery rate was 18 times higher than that for phosphate, whereas the molar concentration of ammonium in the feed was 10 times higher than that of phosphate. An average recovery of 72 ± 1% and 90 ± 10% for ammonium and phosphate was observed after 3 h of operation. A monovalent anion selective (MVA) membrane was used to avoid ammonium and reduce the concentration of monovalent anions in the phosphorus stream. The pH in the phosphorus stream was kept at 10 so phosphate did not pass the MVA membrane. A membrane area of 26 m2 per m3 digester supernatant was required to recover 70% of phosphate and ammonium for the digester supernatant that contained 6 mM phosphate and 105 mM ammonium.


Assuntos
Compostos de Amônio , Fosfatos , Fósforo , Rios , Águas Residuárias
5.
Water Environ Res ; 93(2): 207-216, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32645226

RESUMO

Membrane bioreactors (MBRs) for wastewater treatment show great potentials in the sustainable development of urban environments. However, fouling of membranes remains the largest challenge of MBR technology. Dissolved extracellular polymeric substances (EPS) are often assumed be the main foulant in MBRs. However, single bacterial cells are often erroneously measured as EPS in traditional spectrophotometric analysis of EPS in activated sludge, so we hypothesized that single cells in many cases could be the true foulants in MBRs for wastewater treatment. To study this, raw MBR sludge and sludge supernatant with varying concentrations of planktonic cells were filtered on microfiltration (MF) membranes, and we found a direct correlation between the cell count and rate of flux decline. Addition of planktonic cells to fresh MBR sludge dramatically increased the flux decline. The identity of the most abundant planktonic cells in a full-scale MBR water resource recovery facility was determined by DNA fingerprinting. Many of these genera are known to be abundant in influent wastewater suggesting that the influent bacterial cells may have a direct effect on the fouling propensity in MBR systems. This new knowledge may lead to new anti-fouling strategies targeting incoming planktonic bacteria from the wastewater feed. PRACTITIONER POINTS: Planktonic cells constituted up to 60% of the total protein content of "soluble extracellular polymeric substances" in membrane bioreactor sludge. Planktonic cells are hidden under a surrogate concentration of extracellular polymeric substances which is often associated with fouling. Membrane fouling rate is directly proportional to amount of free planktonic cells suspended in sludge. Several influent bacterial genera are enriched in the water phase of membrane bioreactor sludge. Removing these may mitigate fouling.


Assuntos
Plâncton , Águas Residuárias , Bactérias , Reatores Biológicos , Membranas Artificiais , Esgotos
6.
Membranes (Basel) ; 10(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290302

RESUMO

A methodology was developed for direct observation and analysis of particle movements near a microfiltration membrane. A high speed camera (1196 frames per second) was mounted on a microscope to record a hollow fiber membrane in a filtration cell with a transparent wall. Filtrations were conducted at varying pressure and crossflow velocities using synthetic core-shell particles (diameter 1.6 µm) of no and high negative surface charge. MATLAB scripts were developed to track the particle positions and calculate velocities of particle movements across and towards the membrane surface. Data showed that the velocity of particles along the membrane increases with distance from the membrane surface which correlates well with a fluid velocity profile obtained from CFD modelling. Particle track and trace was used to calculate the particle count profiles towards the membrane and document a higher concentration of particles near the membrane surface than in the bulk. Calculation of particle velocity towards and away from the membrane showed a region within 3-80 µm from the membrane surface with particle velocities higher than expected from the velocity of water through the membrane, thus the permeation drag underpredicts the actual velocity of particles towards the membrane. Near the membrane, particle velocities shift direction and move away. This is not described in classical filtration theory, but it has been speculated that this is an effect of particle rotation or due to membrane vibration or change in flow pattern close to the membrane.

7.
PLoS One ; 12(7): e0181652, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28749990

RESUMO

A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology's ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation.


Assuntos
Reatores Biológicos , Filtração/instrumentação , Incrustação Biológica , Floculação , Membranas Artificiais , Pressão , Esgotos , Águas Residuárias/análise , Purificação da Água
8.
Water Res ; 120: 117-132, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28478289

RESUMO

A range of parameters affecting floc characteristics, sludge composition and filtration properties was investigated by analyzing 29 sludge samples from municipal and industrial conventional activated sludge systems and municipal membrane bioreactors (MBR). Samples were characterized by physico-chemical parameters, composition of ions and EPS, degree of flocculation, settling properties, dewatering properties, and filtration properties. By analyzing the interplay between various metrics instead of single parameters, a unified understanding of the influence of sludge composition and characteristics was developed. From this, a conceptual model was proposed to describe the interplay between sludge composition, characteristics, and filtration properties. The article shows three major results contributing to describe the interplay between sludge characteristics and fouling propensity: First, the degree of flocculation could be quantified by the ratio between floc size and residual turbidity and was a key parameter to assess fouling propensity. Second, extracted EPS to polyvalent cations ratio was used as an indicator of the flocculation. A high ratio combined with a high concentration of EPS resulted in large, loosely bound, and weak flocs that were easily deformed, hence giving compressible fouling layers. Finally, high amounts of carbohydrates in both total and extracted EPS resulted in more pronounced fouling, which may be explained by carbohydrates forming poorer flocs than humic substances and proteins. Accordingly, samples with high humic content showed lower specific resistance to filtration due to better floc structure. The amount of carbohydrates in EPS correlated positively to the influent COD/N ratio, which may explain why systems with high influent COD/N ratio demonstrated higher fouling propensity.


Assuntos
Floculação , Esgotos , Reatores Biológicos , Cátions , Filtração , Eliminação de Resíduos Líquidos
9.
Water Res ; 82: 14-24, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25959073

RESUMO

Biological wastewater treatment removes organic materials, nitrogen, and phosphorus from wastewater using microbial biomass (activated sludge, biofilm, granules) which is separated from the liquid in a clarifier or by a membrane. Part of this biomass (excess sludge) is transported to digesters for bioenergy production and then dewatered, it is dewatered directly, often by using belt filters or decanter centrifuges before further handling, or it is dewatered by sludge mineralization beds. Sludge is generally difficult to dewater, but great variations in dewaterability are observed for sludges from different wastewater treatment plants as a consequence of differences in plant design and physical-chemical factors. This review gives an overview of key parameters affecting sludge dewatering, i.e. filtration and consolidation. The best dewaterability is observed for activated sludge that contains strong, compact flocs without single cells and dissolved extracellular polymeric substances. Polyvalent ions such as calcium ions improve floc strength and dewaterability, whereas sodium ions (e.g. from road salt, sea water intrusion, and industry) reduce dewaterability because flocs disintegrate at high conductivity. Dewaterability dramatically decreases at high pH due to floc disintegration. Storage under anaerobic conditions lowers dewaterability. High shear levels destroy the flocs and reduce dewaterability. Thus, pumping and mixing should be gentle and in pipes without sharp bends.


Assuntos
Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Filtração , Floculação , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...