Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 9510, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29934588

RESUMO

Atlantic salmon farming operates with high production intensities where skin integrity is recognized as a central factor and indicator for animal health and welfare. In the described trial, the skin development and its immune status in healthy Atlantic salmon reared in two different systems, a traditional open net-pen system and a semi-closed containment system, were investigated. Freshwater smolts were compared to post-smolts after 1 and 4 months in seawater. Growth performance, when adjusted for temperature, was equal between the systems. Skin analyses, including epidermis and dermis, showed that thickness and mucus cell numbers increased in pace with the growth and time post seawater transfer (PST). Gene expression changes suggested similar processes with development of connective tissue, formation of extracellular matrix and augmented cutaneous secretion, changes in mucus protein composition and overall increased immune activity related to gradually enforced protection against pathogens. Results suggest a gradual morphological development in skin with a delayed recovery of immune functions PST. It is possible that Atlantic salmon could experience increased susceptibility to infectious agents and risk of diseases during the first post-smolt period.


Assuntos
Salmo salar/crescimento & desenvolvimento , Água do Mar , Pele/metabolismo , Animais , Salmo salar/genética , Salmo salar/metabolismo , Pele/crescimento & desenvolvimento , Transcrição Gênica
2.
PLoS One ; 12(12): e0189103, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29236729

RESUMO

The aim of this study was to identify potential mucin genes in the Atlantic salmon genome and evaluate tissue-specific distribution and transcriptional regulation in response to aquaculture-relevant stress conditions in post-smolts. Seven secreted gel-forming mucin genes were identified based on several layers of evidence; annotation, transcription, phylogeny and domain structure. Two genes were annotated as muc2 and five genes as muc5. The muc2 genes were predominantly transcribed in the intestinal region while the different genes in the muc5 family were mainly transcribed in either skin, gill or pyloric caeca. In order to investigate transcriptional regulation of mucins during stress conditions, two controlled experiments were conducted. In the first experiment, handling stress induced mucin transcription in the gill, while transcription decreased in the skin and intestine. In the second experiment, long term intensive rearing conditions (fish biomass ~125 kg/m3) interrupted by additional confinement led to increased transcription of mucin genes in the skin at one, seven and fourteen days post-confinement.


Assuntos
Biomarcadores/metabolismo , Genoma , Mucinas/genética , Salmão/genética , Animais , Reação em Cadeia da Polimerase em Tempo Real
3.
Front Microbiol ; 8: 2043, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104567

RESUMO

The skin of the teleost is a flexible and scaled structure that protects the fish toward the external environment. The outermost surface of the skin is coated with mucus, which is believed to be colonized by a diverse bacterial community (commensal and/or opportunistic). Little is known about such communities and their role in fish welfare. In aquaculture, fish seem to be more susceptible to pathogens compared to wild fish. Indeed common fish farming practices may play important roles in promoting their vulnerability, possibly by causing changes to their microbiomes. In the present study, 16S rRNA gene amplicon sequencing was employed to analyze the composition of the farmed Salmo salar skin-mucus microbiome before and after netting and transfer. The composition of the bacterial community present in the rearing water was also investigated in order to evaluate its correlation with the community present on the fish skin. Our results reveal variability of the skin-mucus microbiome among the biological replicates before fish handling. On the contrary, after fish handling, the skin-mucus community exhibited structural similarity among the biological replicates and significant changes were observed in the bacterial composition compared to the fish analyzed prior to netting and transfer. Limited correlation was revealed between the skin-mucus microbiome and the bacterial community present in the rearing water. Finally, analysis of skin-mucus bacterial biomasses indicated low abundance for some samples, highlighting the need of caution when interpreting community data due to the possible contamination of water-residing bacteria.

4.
PLoS One ; 12(7): e0181109, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28700748

RESUMO

Heart and skeletal muscle inflammation (HSMI) is associated with Piscine orthoreovirus (PRV) infection and is an important disease in Atlantic salmon (Salmo salar) aquaculture. Since PRV infects erythrocytes and farmed salmon frequently experience environmental hypoxia, the current study examined mutual effects of PRV infection and hypoxia on pathogenesis and fish performance. Furthermore, effects of HSMI on hypoxia tolerance, cardiorespiratory performance and blood oxygen transport were studied. A cohabitation trial including PRV-infected post-smolts exposed to periodic hypoxic stress (4 h of 40% O2; PRV-H) at 4, 7 and 10 weeks post-infection (WPI) and infected fish reared under normoxic conditions (PRV) was conducted. Periodic hypoxic stress did not influence infection levels or histopathological changes in the heart. Individual incipient lethal oxygen saturation (ILOS) was examined using a standardized hypoxia challenge test (HCT). At 7 WPI, i.e. peak level of infection, both PRV and PRV-H groups exhibited reduced hypoxia tolerance compared to non-infected fish. Three weeks later (10 WPI), during peak levels of pathological changes, reduced hypoxia tolerance was still observed for the PRV group while PRV-H performed equal to non-infected fish, implying a positive effect of the repeated exposure to hypoxic stress. This was in line with maximum heart rate (fHmax) measurements, showing equal performance of PRV-H and non-infected groups, but lower fHmax above 19°C as well as lower temperature optimum (Topt) for aerobic scope for PRV, suggesting reduced cardiac performance and thermal tolerance. In contrast, the PRV-H group had reduced hemoglobin-oxygen affinity compared to non-infected fish. In conclusion, Atlantic salmon suffering from HSMI have reduced hypoxia tolerance and cardiac performance, which can be improved by preconditioning fish to transient hypoxic stress episodes.


Assuntos
Hipóxia/fisiopatologia , Inflamação/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Salmo salar/metabolismo , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Inflamação/imunologia , Músculo Esquelético/imunologia , Miocárdio/imunologia , Miosite/imunologia , Miosite/metabolismo , Orthoreovirus/patogenicidade , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/metabolismo , Salmo salar/imunologia
5.
Mol Immunol ; 88: 99-105, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28623734

RESUMO

Immunoglobulin M plays a key role in systemic protection of Atlantic salmon against pathogens. Until recent, studies have focused on antigen-specific antibodies and little is known about the IgM repertoire: its size, developmental changes and responses to antigens. We report the development of deep sequencing protocol to characterize the repertoire of IgM heavy chain variable region. Its structure and changes were examined at the early stages of life and after infection with virus of cardiac myopathy. Clonotypes are identified by the V and J gene segments and amino acid sequences of CDR3, which determine the contribution of the heavy chain to the antigen binding properties. A major fraction of transcripts are functional while the rest are either sterile (transcribed from noncoding parts of Ig loci) or include stop codons. Despite marked difference in frequencies of combinations of V and J genes, the size of repertoire is large. The IgM diversity steadily increases after hatch followed with temporal reduction during smoltification and recovery after seawater transfer. Most clonotypes are present only in one fish. However multiple transcripts in uninfected fish are produced exclusively from a small fraction of shared clonotypes. While only 4.7% of clonotypes are detected in three and more fish, they comprise 35% of transcripts. Increased frequencies of most abundant clonotypes were detected in the head kidney and blood at ten weeks after viral infection and all were shared. Occurrence of the same clonotypes in multiple individuals can be explained with either their simple structure or exposure to common antigens. Complexity of CDR3 assessed by contents of non complementary nucleotides is slightly lower in shared clonotypes but difference is small. High nucleotide diversity of CDR3 with identical amino acid sequences suggests selection.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias J de Imunoglobulina/genética , Imunoglobulina M/genética , Região Variável de Imunoglobulina/genética , Salmo salar/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Estrutura Secundária de Proteína
6.
PeerJ ; 5: e3273, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28462060

RESUMO

A period of starvation is regarded as a sound practice in aquaculture prior to handling, transportation and harvest, to minimise impacts on welfare and ensure proper hygiene after harvest. However, documentation of welfare issues such as stress following starvation and handling in adult Atlantic salmon are lacking. This study aimed to examine gut emptying and potential stress during a two week starvation period, and whether this starvation period changed the tolerance for physical stress. The study confirmed slower emptying of the gut segments at low temperature. Plasma and bile cortisol, and selected clinical analyses were used to characterize potential stress, as well as the response to acute physical crowding stress during the starvation period. Neither the general stress level nor the ability to cope with handling stress was affected by a 14 day starvation period. Down-regulation of selected nutritional related gene markers in liver indicated classical starvation responses, with reduced metabolism and oxidative pressure, and sparing of nutrients. The response to acute handling stress was not affected by two weeks of starvation. There were minor effects of starvation on stress and health markers, as evaluated by plasma lysozyme activity and gene expression of selected inflammation marker proteins in heart and skin tissues.

7.
Fish Shellfish Immunol ; 58: 33-41, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27637733

RESUMO

Smoltification and seawater adaptation of Atlantic salmon are associated with profound alterations in the endocrine status, osmoregulation and behaviour. Little is known about immunological changes during smoltification, although increased incidences of infectious diseases after seawater transfer (SWT) may indicate weakened protection. We report microarray gene expression analyses in farmed Atlantic salmon during smoltification stimulated with constant light and early seawater adaptation (one and three weeks after SWT). Gene expression changes were large, their magnitude in the head kidney and proximal intestine was greater than in the gill. Among 360 differentially expressed immune genes, 300 genes were down-regulated, and multiple functional groups were affected such as innate antiviral immunity, chemokines, cytokines and receptors, signal transducers, effectors of humoral and cellular innate immunity, antigen presentation and lymphocytes, especially T cells. No recovery was observed after three weeks in seawater. A notable exception was a transient up-regulation of immunoglobulin transcripts in the gill after SWT. Genes involved in stress responses and xenobiotic metabolism were up-regulated in respectively intestine and gill. The duration of this observed immune suppression and the possible consequences for susceptibility to infections and diseases need further exploration.


Assuntos
Imunidade Inata/efeitos dos fármacos , Águas Salinas/farmacologia , Salmo salar/genética , Salmo salar/imunologia , Transcriptoma/efeitos dos fármacos , Animais , Brânquias/efeitos dos fármacos , Brânquias/imunologia , Brânquias/metabolismo , Rim Cefálico/efeitos dos fármacos , Rim Cefálico/imunologia , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Regulação para Cima/efeitos dos fármacos
8.
Mol Immunol ; 73: 138-50, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27101566

RESUMO

Heart and skeletal muscle inflammation (HSMI) are a disease of farmed Atlantic salmon (Salmo salar) associated with Piscine orthoreovirus (PRV). The disease appears mainly during the marine production phase. This study examined if smoltification and transfer to seawater could compromise immune responses to PRV. Parr and smolts of the same origin were challenged by cohabitation with intraperitoneally injected salmon. Peak levels of PRV in spleen of cohabitants were reached after 8 weeks, but at a lower level in parr compared to smolts. Thereafter the virus levels declined, but remained significantly lower in parr than in smolts. Both groups developed typical HSMI histopathological heart lesions, which were most prominent after 10 weeks. Microarray and qPCR analyses revealed slightly lower expression of immune genes in spleen and head kidney of smolts before challenge. Infected parr showed earlier induction of genes involved in innate antiviral immunity, as well as for genes related to B and T cell responses. Gene expression profiles also indicated stimulation of heme and iron metabolism and erythropoiesis in smolts, which may indicate replacement of PRV-infected erythrocytes.


Assuntos
Doenças dos Peixes/imunologia , Expressão Gênica/imunologia , Infecções por Reoviridae/veterinária , Salmo salar/imunologia , Salmo salar/virologia , Animais , Aquicultura/métodos , Doenças dos Peixes/virologia , Análise de Sequência com Séries de Oligonucleotídeos , Orthoreovirus , Reação em Cadeia da Polimerase
9.
Fish Shellfish Immunol ; 46(2): 612-23, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26232631

RESUMO

Pancreas disease (PD) and heart and skeletal muscle inflammation (HSMI) are viral diseases associated with SAV (salmonid alphavirus) and PRV (piscine reovirus), which induce systemic infections and pathologies in cardiac and skeletal muscle tissue of farmed Atlantic salmon (Salmo salar L), resulting in severe morbidity and mortality. While general features of the clinical symptoms and pathogenesis of salmonid viral diseases are relatively well studied, much less is known about molecular mechanisms associated with immunity and disease-specific changes. In this study, transcriptomic analyses of heart tissue from PD and HSMI challenged Atlantic salmon were done, focusing on the mature phases of both diseases at respectively 28-35 and 42-77 days post infection. A large number of immune genes was activated in both trials with prevalence of genes associated with early innate antiviral responses, their expression levels being slightly higher in PD challenged fish. Activation of the IFN axis was in parallel with inflammatory changes that involved diverse humoral and cellular factors. Adaptive immune response genes were more pronounced in fish with HSMI, as suggested by increased expression of a large number of genes associated with differentiation and maturation of B lymphocytes and cytotoxic T cells. A similar down-regulation of non-immune genes such as myofiber and mitochondrial proteins between diseases was most likely reflecting myocardial pathology. A suite of genes important for cardiac function including B-type natriuretic peptide and four neuropeptides displayed differential expression between PD and HSMI. Comparison of results revealed common and distinct features and added to the understanding of both diseases at their mature phases with typical clinical pictures. A number of genes that showed disease-specific changes can be of interest for diagnostics.


Assuntos
Alphavirus/fisiologia , Doenças dos Peixes/imunologia , Cardiopatias/veterinária , Pancreatopatias/veterinária , Reoviridae/fisiologia , Salmo salar , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/veterinária , Infecções por Alphavirus/virologia , Animais , Regulação para Baixo , Doenças dos Peixes/virologia , Cardiopatias/imunologia , Cardiopatias/virologia , Inflamação/imunologia , Inflamação/veterinária , Inflamação/virologia , Miocárdio/imunologia , Miocárdio/metabolismo , Pancreatopatias/imunologia , Pancreatopatias/virologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia
10.
Fish Shellfish Immunol ; 45(2): 780-90, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26057463

RESUMO

Heart and skeletal muscle inflammation (HSMI) is a widespread disease of farmed Atlantic salmon (Salmo salar L.) and is associated with piscine orthoreovirus (PRV) infection. PRV is detectable in blood long before development of pathology in cardiac- and skeletal muscle appear, and erythrocytes have been identified as important target cells for the virus. The effects of PRV infection on cellular processes of erythrocytes are not known, but haemolytic anemia or systemic lysis of erythrocytes does not seem to occur, even with high virus loads in erythrocytes. In this study, gene expression profiling performed with high-density oligonucleotide microarray showed that PRV infection of erythrocytes induced a large panel of virus responsive genes. These involved interferon-regulated antiviral genes, as well as genes involved in antigen presentation via MHC class I. PRV infection also stimulated negative immune regulators. In contrast, a large number of immune genes expressed prior to infection were down-regulated. Moderate reduction of expression was also found for many genes encoding components of cytoskeleton and myofiber, proteins involved in metabolism, ion exchange, cell-cell interactions as well as growth factors and regulators of differentiation. PRV did not affect expression of genes involved in heme biosynthesis, gas exchange or erythrocyte-specific markers, but some regulators of erythropoiesis showed decreased transcription levels. These results indicate that PRV infection activates innate antiviral immunity in salmon erythrocytes, but suppresses other gene expression programs. Gene expression profiles suggest major phenotypic changes in PRV infected erythrocytes, but the functional consequences remain to be explored.


Assuntos
Eritrócitos/metabolismo , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica , Orthoreovirus/fisiologia , Infecções por Reoviridae/veterinária , Salmo salar , Transcriptoma , Animais , Eritrócitos/virologia , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Perfilação da Expressão Gênica/veterinária , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Fenótipo , Reação em Cadeia da Polimerase/veterinária , Infecções por Reoviridae/genética , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/virologia
11.
BMC Genomics ; 15: 462, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24919788

RESUMO

BACKGROUND: Cardiomyopathy syndrome (CMS) is a severe cardiac disease of Atlantic salmon (Salmo salar) recently associated with a double-stranded RNA virus, Piscine Myocarditis Virus (PMCV). The disease has been diagnosed in 75-85 farms in Norway each year over the last decade resulting in annual economic losses estimated at up to €9 million. Recently, we demonstrated that functional feeds led to a milder inflammatory response and reduced severity of heart lesions in salmon experimentally infected with Atlantic salmon reovirus, the causal agent of heart and skeletal muscle inflammation (HSMI). In the present study we employed a similar strategy to investigate the effects of functional feeds, with reduced lipid content and increased eicosapentaenoic acid levels, in controlling CMS in salmon after experimental infection with PMCV. RESULTS: Hepatic steatosis associated with CMS was significantly reduced over the time course of the infection in fish fed the functional feeds. Significant differences in immune and inflammatory responses and pathology in heart tissue were found in fish fed the different dietary treatments over the course of the infection. Specifically, fish fed the functional feeds showed a milder and delayed inflammatory response and, consequently, less severity of heart lesions at earlier and later stages after infection with PMCV. Decreasing levels of phosphatidylinositol in cell membranes combined with the increased expression of genes related with T-cell signalling pathways revealed new interactions between dietary lipid composition and the immune response in fish during viral infection. Dietary histidine supplementation did not significantly affect immune responses or levels of heart lesions. CONCLUSIONS: Combined with the previous findings on HSMI, the results of the present study highlight the potential role of clinical nutrition in controlling inflammatory diseases in Atlantic salmon. In particular, dietary lipid content and fatty acid composition may have important immune-modulatory effects in Atlantic salmon that could be potentially beneficial in fish balancing the immune and tissue responses to viral infections.


Assuntos
Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Metabolismo dos Lipídeos , Miocárdio/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Transcriptoma , Animais , Ácidos Graxos/metabolismo , Doenças dos Peixes/virologia , Perfilação da Expressão Gênica , Coração/virologia , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Miocárdio/patologia , Salmo salar/virologia , Transdução de Sinais , Fatores de Tempo , Totiviridae/fisiologia , Carga Viral
12.
BMC Physiol ; 14: 2, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24581386

RESUMO

BACKGROUND: Atlantic salmon aquaculture operations in the Northern hemisphere experience large seasonal fluctuations in seawater temperature. With summer temperatures often peaking around 18-20°C there is growing concern about the effects on fish health and performance. Since the heart has a major role in the physiological plasticity and acclimation to different thermal conditions in fish, we wanted to investigate how three and eight weeks exposure of adult Atlantic salmon to 19°C, previously shown to significantly reduce growth performance, affected expression of relevant genes and proteins in cardiac tissues under experimental conditions. RESULTS: Transcriptional responses in cardiac tissues after three and eight weeks exposure to 19°C (compared to thermal preference, 14°C) were analyzed with cDNA microarrays and validated by expression analysis of selected genes and proteins using real-time qPCR and immunofluorescence microscopy. Up-regulation of heat shock proteins and cell signaling genes may indicate involvement of the unfolded protein response in long-term acclimation to elevated temperature. Increased immunofluorescence staining of inducible nitric oxide synthase in spongy and compact myocardium as well as increased staining of vascular endothelial growth factor in epicardium could reflect induced vascularization and vasodilation, possibly related to increased oxygen demand. Increased staining of collagen I in the compact myocardium of 19°C fish may be indicative of a remodeling of connective tissue with long-term warm acclimation. Finally, higher abundance of transcripts for genes involved in innate cellular immunity and lower abundance of transcripts for humoral immune components implied altered immune competence in response to elevated temperature. CONCLUSIONS: Long-term exposure of Atlantic salmon to 19°C resulted in cardiac gene and protein expression changes indicating that the unfolded protein response, vascularization, remodeling of connective tissue and altered innate immune responses were part of the cardiac acclimation or response to elevated temperature.


Assuntos
Expressão Gênica , Miocárdio/metabolismo , Salmão/metabolismo , Temperatura , Animais , Análise de Sequência com Séries de Oligonucleotídeos , Salmão/genética , Água do Mar
13.
Fish Shellfish Immunol ; 35(4): 1079-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23872471

RESUMO

The Mitogen-activated protein kinases (MAPK) are involved in transmitting intracellular signals downstream of diverse cell surface receptors and mediate the response to ligands such as growth factors, hormones and cytokines. In addition, MAPK are critically involved in the innate immune response to pathogen-derived substances, commonly referred to as pathogen-associated molecular patterns (PAMPs), such as bacterial lipopolysaccharide (LPS) and bacterial DNA rich in CpG dinucleotides. Currently, a great deal of knowledge is available about the involvement of MAPK in the innate immune response to PAMPs in mammals; however, little is known about the role of the different MAPK classes in the immune response to PAMPs in lower vertebrates. In the current study, p38 phosphorylation was induced by CpG oligonucleotides (ODNs) and LPS in primary salmon mononuclear phagocytes. Pre-treatment of the cells with a p38 inhibitor (SB203580) blocked the PAMP-induced p38 activity and suppressed the upregulation of most of the CpG- and LPS-induced transcripts highlighting the role of this kinase in the salmon innate immune response to PAMPs. In contrast to p38, the phosphorylation of extracellular signal-regulated kinase (ERK), a MAPK involved primarily in response to mitogens, was high in resting cells and, surprisingly, incubation with both CpG and control ODNs downregulated the phospho-ERK levels independently of p38 activation. The basal phospho-ERK level and the CpG-inducible p38 phosphorylation were greatly influenced by the length of in vitro incubation. The basal phospho-ERK level increased gradually throughout a 5-day culture period and was PI3K-dependent as demonstrated by its sensitivity to Wortmannin suggesting it is influenced by growth factors. Overall these data indicate that both basal and PAMP-induced activity of MAPKs might be greatly influenced by the differentiation status of salmon mononuclear phagocytes.


Assuntos
Leucócitos/enzimologia , Salmo salar/genética , Salmo salar/imunologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Western Blotting/veterinária , Diferenciação Celular , DNA Bacteriano/química , Escherichia coli , Imidazóis/farmacologia , Imunidade Inata , Leucócitos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Análise em Microsséries/veterinária , Oligodesoxirribonucleotídeos/farmacologia , Fagocitose/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Piridinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Salmo salar/metabolismo , Regulação para Cima
14.
Gen Comp Endocrinol ; 192: 181-90, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23665104

RESUMO

Anemia is a common pathophysiological response to stressors, malnutrition and infections in salmonid fish. In order to improve our understanding of the molecular mechanisms and markers associated with induced erythropoiesis (EP) during acute anemia in Atlantic salmon (Salmo salar L.), we performed transcriptome analysis of fish injected with the hemolytic compound phenylhydrazine (PHZ). Treatment with a low dose of PHZ resulted in moderate but significant reduction of hematocrit (Hct) and increased transcription of cardiac erythropoietin (epo) at 2 days post challenge (dpc), and epo receptor (epor) in spleen from 2 to 4 dpc. Oligonucleotide microarrays were used to characterize the events of EP in the spleen, an important organ for expansive EP during acute erythropoietic stress in rodents, and these were compared to gene expression profiles of untreated mature red blood cells (RBC) in order to search for erythroid-specific genes. Splenic responses suggested a prevalence of protective mechanisms at the first stage, characterized by induced xenobiotic metabolism and responses to oxidative and protein stress. Erythroid-specific regulation was evident at 2 dpc and enhanced by 4 dpc, and gene expression profiles witnessed a rapid establishment of RBC phenotype although Hct levels remained low. A large group of genes showed a strong correlation to globins by expression profiles. In addition to epor this included genes of heme and iron metabolism, scavengers of free radicals and chaperones, channels and transporters, markers of erythrocytes, regulators of proliferation and cell cycle arrest and many genes with unidentified roles in RBC differentiation. Induced EP in spleen was characterized by specific features, such as upregulation of innate antiviral immune genes and sustained high expression of proapoptotic genes including caspases. Transcriptome changes suggested an association between EP and suppression of several developmental programs including adaptive immune responses. In conclusion, acute hemolysis and resulting anemia rapidly induced EP in the spleen of Atlantic salmon, which showed both common characteristics for all vertebrates as well as fish-specific properties.


Assuntos
Anemia/genética , Eritropoese/fisiologia , Salmo salar/metabolismo , Transcriptoma/genética , Animais , Eritropoese/genética , Doenças dos Peixes , Perfilação da Expressão Gênica , Salmo salar/genética , Baço/metabolismo
15.
Mol Immunol ; 54(3-4): 443-52, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23416425

RESUMO

Genome sequencing combined with transcriptome profiling promotes exploration of defence against pathogens and discovery of immune genes. Based on sequences from the recently released genome of Atlantic cod, a genome-wide oligonucleotide microarray (ACIQ-1) was designed and used for analyses of gene expression in the brain during infection with nervous necrosis virus (NNV). A challenge experiment with NNV was performed with Atlantic cod juveniles and brain samples from virus infected and uninfected fish were used for microarray analysis. Expression of virus induced genes increased at 5 days post challenge and persisted at stable level to the last sampling at 25 days post challenge. A large fraction of the up-regulated genes (546 features) were known or expected to have immune functions and most of these have not previously been characterized in Atlantic cod. Transcriptomic changes induced by the virus involved strong activation of genes associated with interferon and tumour necrosis factor related responses and acute inflammation. Up-regulation of genes involved in adaptive immunity suggested a rapid recruitment of B and T lymphocytes to the NNV infected brain. QPCR analyses of 15 candidate genes of innate immunity showed rapid induction by poly(I:C) in Atlantic cod larvae cells suggesting an antiviral role. Earliest and greatest expression changes after poly I:C stimulation was observed for interferon regulatory factors IRF4 and IRF7. Comparative studies between teleost species provided new knowledge about the evolution of innate antiviral immunity in fish. A number of genes is present or responds to viruses only in fish. Innate immunity of Atlantic cod is characterized by selective expansion of several medium-sized multigene families with ribose binding domains. An interesting finding was the high representation of three large gene families among the early antiviral genes, including tripartite motif proteins (TRIM) and proteins with PRY-SPRY and NACHT domains. The latter two with respectively 52 and 114 members in Atlantic cod have gone through expansions in different groups of fish. These proteins most likely have ligand binding properties and their propagation could be linked to the loss of MHC class II in the Atlantic cod genome.


Assuntos
Encéfalo/virologia , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Gadus morhua/genética , Gadus morhua/virologia , Nodaviridae/imunologia , Viroses/veterinária , Imunidade Adaptativa , Animais , Apresentação de Antígeno , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/virologia , Encéfalo/imunologia , Encéfalo/metabolismo , Células Cultivadas , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Gadus morhua/imunologia , Expressão Gênica/imunologia , Genoma , Estudo de Associação Genômica Ampla/métodos , Imunidade Inata/genética , Imunidade Inata/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/virologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Nodaviridae/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Transcriptoma , Regulação para Cima/imunologia , Viroses/genética , Viroses/imunologia , Viroses/virologia
16.
BMC Genomics ; 13: 205, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22646522

RESUMO

BACKGROUND: Cardiomyopathy syndrome (CMS) is a severe disease of Atlantic salmon (Salmo salar L.) associated with significant economic losses in the aquaculture industry. CMS is diagnosed with a severe inflammation and degradation of myocardial tissue caused by a double-stranded RNA virus named piscine myocarditis virus (PMCV), with structural similarities to the Totiviridae family. In the present study we characterized individual host responses and genomic determinants of different disease outcomes. RESULTS: From time course studies of experimentally infected Atlantic salmon post-smolts, fish exhibited different outcomes of infection and disease. High responder (HR) fish were characterized with sustained and increased viral load and pathology in heart tissue. Low responder (LR) fish showed declining viral load from 6-10 weeks post infection (wpi) and absence of pathology. Global gene expression (SIQ2.0 oligonucleotide microarray) in HR and LR hearts during infection was compared, in order to characterize differences in the host response and to identify genes with expression patterns that could explain or predict the different outcomes of disease. Virus-responsive genes involved in early antiviral and innate immune responses were upregulated equally in LR and HR at the first stage (2-4 wpi), reflecting the initial increase in virus replication. Repression of heart muscle development was identified by gene ontology enrichment analyses, indicating the early onset of pathology. By six weeks both responder groups had comparable viral load, while increased pathology was observed in HR fish. This was reflected by induced expression of genes implicated in apoptosis and cell death mechanisms, presumably related to lymphocyte regulation and survival. In contrast, LR fish showed earlier activation of NK cell-mediated cytotoxicity and NOD-like receptor signaling pathways. At the late stage of infection, increased pathology and viral load in HR was accompanied by a broad activation of genes involved in adaptive immunity and particularly T cell responses, probably reflecting the increased infiltration and homing of virus-specific T cells to the infected heart. This was in sharp contrast to LR fish, where recovery and reduced viral load was associated with a significantly reduced transcription of adaptive immunity genes and activation of genes involved in energy metabolism. CONCLUSIONS: In contrast to LR, a stronger and sustained expression of genes involved in adaptive immune responses in heart tissue of HR at the late stage of disease probably reflected the increased lymphocyte infiltration and pathological outcome. In addition to controlled adaptive immunity and activation of genes involved in cardiac energy metabolism in LR at the late stage, recovery of this group could also be related to an earlier activation of NOD-like receptor signaling and NK cell-mediated cytotoxicity pathways.


Assuntos
Cardiomiopatias/genética , Salmo salar/genética , Imunidade Adaptativa/genética , Animais , Apoptose/genética , Cardiomiopatias/patologia , Cardiomiopatias/virologia , Metabolismo Energético/genética , Doenças dos Peixes/genética , Doenças dos Peixes/patologia , Doenças dos Peixes/virologia , Coração/crescimento & desenvolvimento , Coração/virologia , Análise de Sequência com Séries de Oligonucleotídeos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Totiviridae/fisiologia , Transcriptoma/genética , Carga Viral
17.
Mol Immunol ; 49(1-2): 163-74, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21924497

RESUMO

Viral diseases are one of the main problems and risk factors in aquaculture. At present diseases are diagnosed by detection of pathogens and clinical symptoms. Identification of genes involved in early responses to viruses is important for better knowledge of antiviral defence and development of diagnostic tools. The aim of this study was to search for gene markers common for viral infections in Atlantic salmon based on microarray analyses of a wide range of samples. Gene expression profiles from fish and cell cultures infected with different viruses and treated with the synthetic double-stranded RNA poly(I:C) were compared in order to identify virus responsive genes (VRG). The list of VRG defined in this study contained 117 genes with known or unidentified functions. Several genes, including the most highly ranked one (receptor transporting protein), had not been previously reported to be involved in antiviral defence. VRG were characterized by a rapid induction and low tissue specificity, and their expression levels were related to the viral load. Immunofluorescence analyses of proteins encoded by VRG in cardiac tissue of salmon with the viral disease cardiomyopathy syndrome (CMS) revealed a common expression pattern. In head kidney leukocytes VRG showed comparable or equal responses to CpG and poly(I:C), which mimic respectively bacterial DNA and viral RNA. Most VRG showed highly correlated expression with interferon-a (IFNa). Sequence comparison of salmon VRG with those from other species gave an understanding of the evolution of these genes, which showed a remarkably rapid sequence divergence in comparison with the entire proteome. VRG emerged both before and after separation of teleosts and tetrapods, and among genes found exclusively in fish species there were members of several multigene families: tripartite motif proteins, gig1- and gig2-like proteins. Several VRG, including genes with unknown functions and orthologs to mammalian RNA helicase RIG-I and chemokine C-X-C type 10, were present in cyprinid and salmonid fish but not in the phylogenetically advanced orders, suggesting that they have been lost in the evolution of Teleostei. Apparently, a number of genes involved in antiviral responses in salmon have acquired different functional roles in higher vertebrates.


Assuntos
Doenças dos Peixes/genética , Proteínas de Peixes/genética , Genoma , Salmo salar/genética , Viroses/veterinária , Animais , Sequência de Bases , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Microscopia de Fluorescência , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salmo salar/imunologia , Salmo salar/virologia , Viroses/genética , Viroses/imunologia
18.
BMC Genomics ; 12: 459, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21943289

RESUMO

BACKGROUND: Cardiomyopathy syndrome (CMS) is a disease associated with severe myocarditis primarily in adult farmed Atlantic salmon (Salmo salar L.), caused by a double-stranded RNA virus named piscine myocarditis virus (PMCV) with structural similarities to the Totiviridae family. Here we present the first characterisation of host immune responses to CMS assessed by microarray transcriptome profiling. RESULTS: Unvaccinated farmed Atlantic salmon post-smolts were infected by intraperitoneal injection of PMCV and developed cardiac pathology consistent with CMS. From analysis of heart samples at several time points and different tissues at early and clinical stages by oligonucleotide microarrays (SIQ2.0 chip), six gene sets representing a broad range of immune responses were identified, showing significant temporal and spatial regulation. Histopathological examination of cardiac tissue showed myocardial lesions from 6 weeks post infection (wpi) that peaked at 8-9 wpi and was followed by a recovery. Viral RNA was detected in all organs from 4 wpi suggesting a broad tissue tropism. High correlation between viral load and cardiac histopathology score suggested that cytopathic effect of infection was a major determinant of the myocardial changes. Strong and systemic induction of antiviral and IFN-dependent genes from 2 wpi that levelled off during infection, was followed by a biphasic activation of pathways for B cells and MHC antigen presentation, both peaking at clinical pathology. This was preceded by a distinct cardiac activation of complement at 6 wpi, suggesting a complement-dependent activation of humoral Ab-responses. Peak of cardiac pathology and viral load coincided with cardiac-specific upregulation of T cell response genes and splenic induction of complement genes. Preceding the reduction in viral load and pathology, these responses were probably important for viral clearance and recovery. CONCLUSIONS: By comparative analysis of gene expression, histology and viral load, the temporal and spatial regulation of immune responses were characterised and novel immune genes identified, ultimately leading to a more complete understanding of host-virus responses and pathology and protection in Atlantic salmon during CMS.


Assuntos
Cardiomiopatias/veterinária , Doenças dos Peixes/imunologia , Salmo salar/genética , Salmo salar/imunologia , Transcriptoma , Animais , Cardiomiopatias/genética , Cardiomiopatias/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Expressão Gênica , Perfilação da Expressão Gênica , Coração/virologia , Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Salmo salar/virologia , Totiviridae/patogenicidade , Carga Viral
19.
Virol J ; 8: 396, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21827718

RESUMO

BACKGROUND: Infectious pancreatic necrosis virus (IPNV) is an aquatic member of the Birnaviridae family that causes widespread disease in salmonids. IPNV is represented by multiple strains with markedly different virulence. Comparison of isolates reveals hyper variable regions (HVR), which are presumably associated with pathogenicity. However little is known about the rates and modes of sequence divergence and molecular mechanisms that determine virulence. Also how the host response may influence IPNV virulence is poorly described. METHODS: In this study we compared two field isolates of IPNV (NFH-Ar and NFH-El). The sequence changes, replication and mortality were assessed following experimental challenge of Atlantic salmon. Gene expression analyses with qPCR and microarray were applied to examine the immune responses in head kidney. RESULTS: Significant differences in mortality were observed between the two isolates, and viral load in the pancreas at 13 days post infection (d p.i.) was more than 4 orders of magnitude greater for NFH-Ar in comparison with NFH-El. Sequence comparison of five viral genes from the IPNV isolates revealed different mutation rates and Ka/Ks ratios. A strong tendency towards non-synonymous mutations was found in the HRV of VP2 and in VP3. All mutations in VP5 produced precocious stop codons. Prior to the challenge, NFH-Ar and NFH-El possessed high and low virulence motifs in VP2, respectively. Nucleotide substitutions were noticed already during passage of viruses in CHSE-214 cells and their accumulation continued in the challenged fish. The sequence changes were notably directed towards low virulence. Co-ordinated activation of anti-viral genes with diverse functions (IFN-a1 and c, sensors - Rig-I, MDA-5, TLR8 and 9, signal transducers - Srk2, MyD88, effectors - Mx, galectin 9, galectin binding protein, antigen presentation - b2-microglobulin) was observed at 13 d p.i. (NFH-Ar) and 29 d p.i. (both isolates). CONCLUSIONS: Mortality and expression levels of the immune genes were directly related to the rate of viral replication, which was in turn associated with sequences of viral genes. Rapid changes in the viral genome that dramatically reduced virus proliferation might indicate a higher susceptibility to protective mechanism employed by the host. Disease outbreak and mortality depend on a delicate balance between host defence, regulation of signalling cascades and virus genomic properties.


Assuntos
Infecções por Birnaviridae/imunologia , Doenças dos Peixes/imunologia , Vírus da Necrose Pancreática Infecciosa/imunologia , Vírus da Necrose Pancreática Infecciosa/patogenicidade , Mutação , Salmo salar/virologia , Animais , Infecções por Birnaviridae/mortalidade , Infecções por Birnaviridae/patologia , Infecções por Birnaviridae/virologia , Doenças dos Peixes/mortalidade , Doenças dos Peixes/patologia , Doenças dos Peixes/virologia , Perfilação da Expressão Gênica , Vírus da Necrose Pancreática Infecciosa/genética , Vírus da Necrose Pancreática Infecciosa/isolamento & purificação , Rim/virologia , Análise em Microsséries , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sobrevida , Virulência , Replicação Viral
20.
Artigo em Inglês | MEDLINE | ID: mdl-21726657

RESUMO

Improving fish robustness is of utmost relevance to reducing fish losses in farming. Although not previously examined, we hypothesized that aerobic training, as shown for human studies, could strengthen disease resistance in Atlantic salmon (Salmo salar). Thus, we exercised salmon pre-smolts for 6 weeks at two different aerobic training regimes; a continuous intensity training (CT; 0.8bls(-1)) and an interval training (IT; 0.8bl s(-1) 16h and 1.0bl s(-1) 8h) and compared them with untrained controls (C; 0.05bl s(-1)). The effects of endurance training on disease resistance were evaluated using an IPN virus challenge test, while the cardiac immune modulatory effects were characterized by qPCR and microarray gene expression analyses. In addition, swimming performance and growth parameters were investigated. Survival after the IPN challenge was higher for IT (74%) fish than for either CT (64%) or C (61%) fish. While both CT and IT groups showed lower cardiac transcription levels of TNF-α, IL-1ß and IL-6 prior to the IPN challenge test, IT fish showed the strongest regulation of genes involved in immune responses and other processes known to affect disease resistance. Both CT and IT regimes resulted in better growth compared with control fish, with CT fish developing a better swimming efficiency during training. Overall, interval aerobic training improved growth and increased robustness of Atlantic salmon, manifested by better disease resistance, which we found was associated with a modulation of relevant gene classes on the cardiac transcriptome.


Assuntos
Resistência à Doença , Condicionamento Físico Animal , Salmo salar/crescimento & desenvolvimento , Salmo salar/imunologia , Animais , Composição Corporal , Citocinas/genética , Citocinas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Miocárdio/metabolismo , Consumo de Oxigênio , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...