Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 207: 120319, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31594613

RESUMO

Midazolam (MID) is a sedative drug which can be added in beverage samples as drug-facilitated-sexual assault (date rape drug). This type of drug has short half-life in biological fluids (not detectable) which often prevents the correlation between drug abuse and crime. In this work, we described a simple and low-cost method for fast screening and selective determination of MID in beverage samples (vodka, whiskey and red wine). For the first time, the electrochemical oxidation of MID was used for this purpose. The oxidation mechanism was studied using electrochemical techniques (cyclic and square-wave voltammetry) and computational simulations (density functional theory calculations). Differential-pulse voltammetry, boron-doped diamond electrode (BDDE), and Britton-Robinson (BR) buffer (pH = 2) were selected as electrochemical analysis technique, working electrode and supporting electrolyte, respectively. Different linear response ranges (4-25 µmol L-1 with r = 0.9972; 1-10 µmol L-1 with r = 0.9951; 1-15 µmol L-1 with r = 0.9982) and limits of detection (0.46, 0.43 and 0.33 µmol L-1) were obtained for the analysis of vodka, whisky, and red wine solutions, respectively. The precision and accuracy were satisfactory considering the low relative standard deviation values (RSD < 6.3%, n = 15) and minimal sample matrix effects (recovery values between 87 and 103%).

2.
Biotechnol Prog ; 33(3): 804-814, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28371522

RESUMO

Schistosomiasis is the second leading cause of death due to parasitic diseases in the world. Seeking an alternative for the control of disease, the World Health Organization funded the genome sequencing of the major species related to schistosomiasis to identify potential vaccines and therapeutic targets. Therefore, the aim of this work was to select T and B-cell epitopes from Schistosoma mansoni through computational analyses and evaluate the immunological potential of epitopes in vitro. Extracellular regions of membrane proteins from the Schistosoma mansoni were used to predict promiscuous epitopes with affinity to different human Major Histocompatibility Class II (MHCII) molecules by bioinformatics analysis. The three-dimensional structure of selected epitopes was constructed and used in molecular docking to verify the interaction with murine MHCII H2-IAb . In this process, four epitopes were selected and synthesized to assess their ability to stimulate proliferation of CD4+ T lymphocytes in mice splenocyte cultures. The results showed that Sm041370 and Sm168240 epitopes induced significant cell proliferation. Additionally, the four epitopes were used as antigens in the Indirect Enzyme-Linked Immunosorbent Assay (ELISA) to assess the recognition by serum from individuals infected with Schistosoma mansoni. Sm140560, Sm168240, and Sm041370 epitopes were recognized by infected individuals IgG antibodies. Therefore, Sm041370 and Sm168240 epitopes that stood out in in silico and in vitro analyses could be promising antigens in schistosomiasis vaccine development or diagnostic kits. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:804-814, 2017.


Assuntos
Epitopos/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células/fisiologia , Biologia Computacional/métodos , Ensaio de Imunoadsorção Enzimática , Complexo Principal de Histocompatibilidade/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Schistosoma mansoni/imunologia
3.
Appl Biochem Biotechnol ; 179(6): 1023-40, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26979443

RESUMO

Schistosomiasis remains an important parasitic disease that affects millions of individuals worldwide. Despite the availability of chemotherapy, the occurrence of constant reinfection demonstrates the need for additional forms of intervention and the development of a vaccine represents a relevant strategy to control this disease. With the advent of genomics and bioinformatics, new strategies to search for vaccine targets have been proposed, as the reverse vaccinology. In this work, computational analyses of Schistosoma mansoni membrane proteins were performed to predict epitopes with high affinity for different human leukocyte antigen (HLA)-DRB1. Ten epitopes were selected and along with murine major histocompatibility complex (MHC) class II molecule had their three-dimensional structures optimized. Epitope interactions were evaluated against murine MHC class II molecule through molecular docking, electrostatic potential, and molecular volume. The epitope Sm141290 and Sm050890 stood out in most of the molecular modeling analyses. Cellular proliferation assay was performed to evaluate the ability of these epitopes to bind to murine MHC II molecules and stimulate CD4+ T cells showing that the same epitopes were able to significantly stimulate cell proliferation. This work showed an important strategy of peptide selection for epitope-based vaccine design, achieved by in silico analyses that can precede in vivo and in vitro experiments, avoiding excessive experimentation.


Assuntos
Proliferação de Células/genética , Epitopos/imunologia , Schistosoma mansoni/imunologia , Vacinas/imunologia , Animais , Epitopos/genética , Humanos , Proteínas de Membrana/imunologia , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Schistosoma mansoni/genética , Schistosoma mansoni/patogenicidade , Linfócitos T/imunologia , Vacinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...