Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 878: 163098, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36996984

RESUMO

The connection between epipelagic and deep-sea mesopelagic realms controls a variety of ecosystem processes including oceanic carbon storage and the provision of harvestable fish stocks. So far, these two layers have been mostly addressed in isolation and the ways they connect remain poorly understood. Furthermore, both systems are affected by climate change, exploitation of resources, and increasing pervasion of pollutants. Here we use bulk isotopes of δ13C and δ15N of 60 ecosystem components to evaluate the trophic linkage between epipelagic and mesopelagic ecosystems in warm oligotrophic waters. Additionally, we we conducted a comparison of isotopic niche sizes and overlaps across multiple species to evaluate how environmental gradients between epipelagic and mesopelagic ecosystems shape ecological patterns of resource use and competition between species. Our database comprises siphonophores, crustaceans, cephalopods, salpas, fishes, and seabirds. It also includes five zooplankton size classes, two groups of fish larvae, and particulate organic matter collected at different depths. Through this wide taxonomic and trophic variety of epipelagic and mesopelagic species, we show that pelagic species access resources originating from different food sources, mostly autotrophic-based (epipelagics) and microbial heterotrophic-based (mesopelagics). This leads to a sharp trophic dissimilarity between vertical layers. Additionally, we show that trophic specialization increases in deep-sea species and argue that food availability and environmental stability are among the main drivers of this pattern. Finally, we discuss how the ecological traits of pelagic species highlighted in this study can respond to human impacts and increase their vulnerability in the Anthropocene.


Assuntos
Ecossistema , Peixes , Animais , Humanos , Oceanos e Mares , Zooplâncton , Estado Nutricional , Cadeia Alimentar
2.
Mar Pollut Bull ; 174: 113309, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35090293

RESUMO

Microplastics are a relevant environmental concern in marine ecosystems due to their ubiquity. However, knowledge on their dispersion patterns within the ocean basin and the interaction with biota are scarce and mostly limited to surface waters. This study investigated microplastic contamination in two species of deep-sea cephalopods from the southwestern Atlantic with different ecological behaviour: the vampire squid (Vampyroteuthis infernalis) and the midwater squid (Abralia veranyi). Microplastic contaminated most of the evaluated specimens. V. infernalis showed higher levels of contamination (9.58 ± 8.25 particles individual-1; p < 0.05) than A. veranyi (2.37 ± 2.13 part. ind.-1), likely due to the feeding strategy of V. infernalis as a faecal pellets feeder. The size of extracted microplastics was inversely proportional to the depth of foraging. The microplastics were highly heterogeneous in composition (shape, colour and polymer type). Our results provide information regarding microplastic interaction with deep-sea organisms and evidence of the biological influence in the microplastic sinking mechanism.


Assuntos
Octopodiformes , Plásticos , Animais , Decapodiformes , Ecossistema , Microplásticos
3.
J Fish Biol ; 99(5): 1576-1590, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34302361

RESUMO

The objective of this study was to analyse the feeding habits and trophic interactions between four oceanic predatory fish around the Fernando de Noronha Archipelago (FNA), Brazil, in the western equatorial Atlantic (3.86°S/32.42°W), internationally recognized as an environment of high economic and ecological value. For this purpose, biological samples of yellowfin tuna (Thunnus albacares), wahoo (Acanthocybium solandri), barracuda (Sphyraena barracuda) and dolphinfish (Coryphaena hippurus) were collected for stomach content and stable isotope analysis. Values of the index of relative importance revealed varied diets, with a strong presence of teleost fishes (Diodontidae and Exocoetidae) for all species, with yellowfin tuna having a greater diversity of food items. Despite being generalists/opportunists, the feeding strategy of these predators showed a tendency towards a specialized diet in the use of the available resources around the FNA. They presented a narrow trophic niche width (Levin's index, Bi < 0.6) and low overlap between species, except between barracuda and wahoo (MacArthur and Levin's, R0  = 0.72). Isotopic compositions had broad values of δ13 C and δ15 N, and were significantly different between species. Our results provide information about the four species' trophic organization and suggest that the predators avoid competition by preying on different prey, thus allowing their coexistence.


Assuntos
Peixes , Perciformes , Animais , Brasil , Isótopos , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...