Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Res ; 20: 17, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27386141

RESUMO

BACKGROUND: Antibacterial coatings of medical devices have been introduced as a promising approach to reduce the risk of infection. In this context, diamond-like carbon coated polyethylene (DLC-PE) can be enriched with bactericidal ions and gain antimicrobial potency. So far, influence of different deposition methods and ions on antimicrobial effects of DLC-PE is unclear. METHODS: We quantitatively determined the antimicrobial potency of different PE surfaces treated with direct ion implantation (II) or plasma immersion ion implantation (PIII) and doped with silver (Ag-DLC-PE) or copper (Cu-DLC-PE). Bacterial adhesion and planktonic growth of various strains of S. epidermidis were evaluated by quantification of bacterial growth as well as semiquantitatively by determining the grade of biofilm formation by scanning electron microscopy (SEM). Additionally silver release kinetics of PIII-samples were detected. RESULTS: (1) A significant (p < 0.05) antimicrobial effect on PE-surface could be found for Ag- and Cu-DLC-PE compared to untreated PE. (2) The antimicrobial effect of Cu was significantly lower compared to Ag (reduction of bacterial growth by 0.8 (Ag) and 0.3 (Cu) logarithmic (log)-levels). (3) PIII as a deposition method was more effective in providing antibacterial potency to PE-surfaces than II alone (reduction of bacterial growth by 2.2 (surface) and 1.1 (surrounding medium) log-levels of PIII compared to 1.2 (surface) and 0.6 (medium) log-levels of II). (4) Biofilm formation was more decreased on PIII-surfaces compared to II-surfaces. (5) A silver-concentration-dependent release was observed on PIII-samples. CONCLUSION: The results obtained in this study suggest that PIII as a deposition method and Ag-DLC-PE as a surface have high bactericidal effects.

2.
AMB Express ; 5(1): 77, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26646789

RESUMO

Silver ions (Ag(+)) have strong bactericidal effects and Ag-coated medical devices proved their effectiveness in reducing infections in revision total joint arthroplasty. We quantitatively determined the antimicrobial potency of different surface treatments on a titanium alloy (Ti), which had been conversed to diamond-like carbon (DLC-Ti) and doped with high (Ag:PVP = 1:2) and low (Ag:PVP = 1:10 and 1:20) concentrations of Ag (Ag-DLC-Ti) with a modified technique of ion implantation. Bacterial adhesion and planktonic growth of clinically relevant bacterial strains (Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa) on Ag-DLC-Ti were compared to untreated Ti by quantification of colony forming units on the adherent surface and in the growth medium as well as semiquantitatively by determining the grade of biofilm formation by scanning electron microscopy. (1) A significant (p < 0.05) antimicrobial effect could be found for all Ag-DLC-Ti samples (reduced growth by 5.6-2.5 logarithmic levels). (2) The antimicrobial effect was depending on the tested bacterial strain (most for P. aeruginosa, least for S. aureus). (3) Antimicrobial potency was positively correlated with Ag concentrations. (4) Biofilm formation was decreased by Ag-DLC-Ti surfaces. This study revealed potent antibacterial effects of Ag-DLC-Ti. This may serve as a promising novel approach to close the gap in antimicrobial protection of musculoskeletal implants.

3.
AMB Express ; 5(1): 64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26391393

RESUMO

Antibacterial coating of medical devices is a promising approach to reduce the risk of infection but has not yet been achieved on wear surfaces, e.g. polyethylene (PE). We quantitatively determined the antimicrobial potency of different PE surfaces, which had been conversed to diamond-like carbon (DLC-PE) and doped with silver ions (Ag-DLC-PE). Bacterial adhesion and planktonic growth of various strains of S. epidermidis on Ag-DLC-PE were compared to untreated PE by quantification of colony forming units on the adherent surface and in the growth medium as well as semiquantitatively by determining the grade of biofilm formation by scanning electron microscopy. (1) A significant (p < 0.05) antimicrobial effect could be found for Ag-DLC-PE. (2) The antimicrobial effect was positively correlated with the applied fluences of Ag (fivefold reduced bacterial surface growth and fourfold reduced bacterial concentration in the surrounding medium with fluences of 1 × 10(17) vs. 1 × 10(16) cm(-2) under implantation energy of 10 keV). (3) A low depth of Ag penetration using low ion energies (10 or 20 vs. 100 keV) led to evident antimicrobial effects (fourfold reduced bacterial surface growth and twofold reduced bacterial concentration in the surrounding medium with 10 or 20 keV and 1 × 10(17) cm(-2) vs. no reduction of growth with 100 keV and 1 × 10(17) cm(-2)). (4) Biofilm formation was decreased by Ag-DLC-PE surfaces. The results obtained in this study suggest that PE-surfaces can be equipped with antibacterial effects and may provide a promising platform to finally add antibacterial coatings on wear surfaces of joint prostheses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...