Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(14)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708710

RESUMO

Thymidylate synthase (TYMS) enzyme is an anti-cancer target given its role in DNA biosynthesis. TYMS inhibitors (e.g., 5-Fluorouracil) can lead to drug resistance through an autoregulatory mechanism of TYMS that causes its overexpression. Since G-quadruplexes (G4) can modulate gene expression, we searched for putative G4 forming sequences (G4FS) in the TYMS gene that could be targeted using polypurine reverse Hoogsteen hairpins (PPRH). G4 structures in the TYMS gene were detected using the quadruplex forming G-rich sequences mapper and confirmed through spectroscopic approaches such as circular dichroism and NMR using synthetic oligonucleotides. Interactions between G4FS and TYMS protein or G4FS and a PPRH targeting this sequence (HpTYMS-G4-T) were studied by EMSA and thioflavin T staining. We identified a G4FS in the 5'UTR of the TYMS gene in both DNA and RNA capable of interacting with TYMS protein. The PPRH binds to its corresponding target dsDNA, promoting G4 formation. In cancer cells, HpTYMG-G4-T decreased TYMS mRNA and protein levels, leading to cell death, and showed a synergic effect when combined with 5-fluorouracil. These results reveal the presence of a G4 motif in the TYMS gene, probably involved in the autoregulation of TYMS expression, and the therapeutic potential of a PPRH targeted to the G4FS.


Assuntos
Quadruplex G , Inativação Gênica , Marcação de Genes , Timidilato Sintase/genética , Sequência de Bases , Sobrevivência Celular , DNA/genética , Células HeLa , Humanos , RNA Mensageiro/genética , Sequências Reguladoras de Ácido Nucleico
2.
BMC Immunol ; 17(1): 32, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27671753

RESUMO

BACKGROUND: In the context of tumor immunology, tumor cells have been shown to overexpress CD47, an anti-phagocytic signal directed to macrophages to escape from phagocytosis by interacting with Signal Regulatory Protein α SIRPα. In the present work, we designed Polypurine reverse Hoogsteen hairpins, PPRHs, to silence the expression of CD47 in tumor cells and SIRPα in macrophages with the aim to eliminate tumor cells by macrophages in co-culture experiments. METHODS: THP-1 cells were differentiated to macrophages with PMA. The mRNA levels of differentiation markers CD14 and Mcl-1 mRNA and pro-inflammatory cytokines (IL-1ß, IL-18, IL-6, IL-8 and TNF-α) were measured by qRT-PCR. The ability of PPRHs to silence CD47 and SIRPα was evaluated at the mRNA level by qRT-PCR and at the protein level by Western Blot. Macrophages were co-cultured with tumor cells in the presence of PPRHs to silence CD47 and/or SIRPα. Cell viability was assessed by MTT assays. RESULTS: THP-1 cells differentiated to macrophages with PMA showed an increase in macrophage surface markers (CD14, Mcl-1) and pro-inflammatory cytokines (IL-1ß, IL-18, IL-6, IL-8 and TNF-α). PPRHs were able to decrease both CD47 expression in MCF-7 cell line and SIRPα expression in macrophages at the mRNA and protein levels. In the presence of PPRHs, MCF-7 cells were eliminated by macrophages in co-culture experiments, whereas they survived in the absence of PPRHs. CONCLUSIONS: Our data support the usage of PPRHs to diminish CD47/SIRPα interaction by decreasing the expression of both molecules thus resulting in an enhanced killing of MCF-7 cells by macrophages, which might translate into beneficial effects in cancer therapy. These results indicate that PPRHs could represent a new approach with immunotherapeutic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA