Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263028

RESUMO

Non-specific protective effects of certain vaccines have been reported, and long-term boosting of innate immunity, termed trained immunity, has been proposed as one of the mechanisms mediating these effects. Several epidemiological studies suggested cross-protection between influenza vaccination and COVID-19. In a large academic Dutch hospital, we found that SARS-CoV-2 infection was less common among employees who had received a previous influenza vaccination: relative risk reductions of 37% and 49% were observed following influenza vaccination during the first and second COVID-19 waves, respectively. The quadrivalent inactivated influenza vaccine induced a trained immunity program that boosted innate immune responses against various viral stimuli and fine-tuned the anti-SARS-CoV-2 response, which may result in better protection against COVID-19. Influenza vaccination led to transcriptional reprogramming of monocytes and reduced systemic inflammation. These epidemiological and immunological data argue for potential benefits of influenza vaccination against COVID-19, and future randomized trials are warranted to test this possibility.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256520

RESUMO

The mRNA-based BNT162b2 vaccine from Pfizer/BioNTech was the first registered COVID-19 vaccine and has been shown to be up to 95% effective in preventing SARS-CoV-2 infections. Little is known about the broad effects of the new class of mRNA vaccines, especially whether they have combined effects on innate and adaptive immune responses. Here we confirmed that BNT162b2 vaccination of healthy individuals induced effective humoral and cellular immunity against several SARS-CoV-2 variants. Interestingly, however, the BNT162b2 vaccine also modulated the production of inflammatory cytokines by innate immune cells upon stimulation with both specific (SARS-CoV-2) and non-specific (viral, fungal and bacterial) stimuli. The response of innate immune cells to TLR4 and TLR7/8 ligands was lower after BNT162b2 vaccination, while fungi-induced cytokine responses were stronger. In conclusion, the mRNA BNT162b2 vaccine induces complex functional reprogramming of innate immune responses, which should be considered in the development and use of this new class of vaccines.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20212498

RESUMO

Every year, influenza causes 290.000 to 650.000 deaths worldwide and vaccination is encouraged to prevent infection in high-risk individuals. Interestingly, cross-protective effects of vaccination against heterologous infections have been reported, and long-term boosting of innate immunity (also termed trained immunity) has been proposed as the underlying mechanism. Several epidemiological studies also suggested cross-protection between influenza vaccination and COVID-19 during the current pandemic. However, the mechanism behind such an effect is unknown. Using an established in-vitro model of trained immunity, we demonstrate that the quadrivalent inactivated influenza vaccine used in the Netherlands in the 2019-2020 influenza season can induce a trained immunity response, including an improvement of cytokine responses after stimulation of human immune cells with SARS-CoV-2. In addition, we found that SARS-CoV-2 infection was less common among Dutch hospital employees who had received influenza vaccination during the 2019/2020 winter season (RR = 0,61 (95% CI, 0.4585 - 0.8195, P = 0.001). In conclusion, a quadrivalent inactivated influenza vaccine can induce trained immunity responses against SARS-CoV-2, which may result in relative protection against COVID-19. These data, coupled with similar recent independent reports, argue for a beneficial effect of influenza vaccination against influenza as well as COVID-19, and suggests its effective deployment in the 2020-2021 influenza season to protect against both infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...