Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomass Convers Biorefin ; : 1-20, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36406949

RESUMO

As a fossil fuel substitute, bio-jet fuel derived from inedible oilseed crops has the potential to improve energy security, decrease carbon footprint, and promote agricultural economy and social development. The efficient production of bio-jet fuels depends on the identification and characterization of eco-friendly and sustainable feedstocks. Brassica carinata (Arun Braun) cultivars are among the most significant industrial oilseeds that can be utilized as alternative feedstocks in the aviation industry. The study thoroughly evaluated four non-food Brassica carinata cultivars that are indigenous to Ethiopia to determine their suitability as substitute feedstocks for the production of bio-jet fuel. The effects of solvent extraction parameters were studied using response surface methodology with Box-Behnken design in an isothermal batch reactor. Physicochemical characterization, fatty acids profiling, ultimate analysis, analysis of metals and phosphorus concentration, Fourier-transform infrared spectroscopy characterization, and calorific value analyses were performed to characterize the properties of oils. Accordingly, oil yields ranged from 35.93 to 45.25%. Erucic acid (EA) was the most predominant fatty acid in all oils, accounting for 42-50%, of Derash and Yellow Dodolla oils, respectively, making Yellow Dodolla oil a super-high erucic acid oil. In comparison to the other oils, Yellow Dodolla was observed to be the least oxygenated oil, with a 7.80% oxygen content and oxygen to carbon ratio of 0.07, which may enable it to consume a very limited amount of hydrogen gas during hydrodeoxygenation in bio-jet fuel production. It was determined that, except for calcium and phosphorous levels in Tesfa, the concentrations of the metals and phosphorous were very small. Alkanes, alkenes, carboxylic acids, esters, alcohols, aromatics, and olefins were among the most significant and main functional groups identified. Our extraction and characterization results revealed that the Brassica carinata cultivars have very high oil contents, better physicochemical properties, excellent fatty acid profiles, and very low concentrations of heteroatoms (nitrogen, sulfur), metals and phosphorous concentrations, and very low level of oxygen to carbon ratios, making the oils, notably Yellow Dodolla oil, very high quality and promising alternative feedstocks for upgrading of the oils into bio-jet fuels through hydroprocessing pathway.

2.
Chemosphere ; 288(Pt 1): 132405, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34597639

RESUMO

In this study, Kaolin clay, a mining material, was used as an abundant and available mineral as zero-valent iron-kaolinite composites for As2O3 removal from the water samples. The composites were made by the sodium borohydrate reduction method. The existence of Fe0 in the produced composites was confirmed by X-ray diffraction (XRD) and Fourier-Transform Infrared Spectroscopy (FTIR) analysis. The membranes are prepared with zerovalent nano Iron-Kaolin and PES. The synthesized composites were then mixed with polyethersulfone to prepare the membranes S1, S2, and S3 with varying compositions. Field Emission Scanning Electron Microscopy (FESEM) analysis of the produced membranes showed the porous structure and the contact angle of membranes increased the hydrophilicity. The membranes were explored for the removal of As2O3 (AsIII) in potable water samples. The filtration studies were carried out using the syringe filtration setup. Analysis of the arsenic (III) solution was carried out, before and after the filtration process using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), which showed a maximum of 50% reduction in its original concentration. The filtered membrane is analyzed for arsenic by Energy Dispersive X-ray (EDX) technique. Thus, the synthesized membrane effectively sieves the arsenic in water samples.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Adsorção , Argila , Ferro , Caulim , Cinética , Polímeros , Sulfonas , Poluentes Químicos da Água/análise
3.
Carbohydr Polym ; 136: 700-9, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26572403

RESUMO

The present study deals with the production of cellulosic ethanol from bagasse using the synthesized TiO2 coupled nanocellulose (NC-TiO2) as catalyst. Aspergillus nidulans AJSU04 cellulase was used for the hydrolysis of bagasse. NC-TiO2 at various concentrations was added to bagasse in order to enhance the yield of reducing sugars. Complex interaction between cellulase, bagasse, NC-TiO2 and the reaction environment is thoroughly studied. A mathematical model was developed to describe the hydrolysis reaction. Ethanol production from enzymatically hydrolyzed sugarcane bagasse catalyzed with NC-TiO2 was carried out using Saccharomyces cerevisiae ATCC 20602. The glucose release rates and ethanol concentrations were determined. Ethanol produced was found to be strongly dependent on pretreatment given, hydrolysis and fermentation conditions. The study confirmed the promising accessibility of NC-TiO2, for enhanced glucose production rates and improved ethanol yield.


Assuntos
Celulase/química , Celulose/química , Etanol/química , Microbiologia Industrial/métodos , Titânio/química , Aspergillus nidulans/enzimologia , Aspergillus nidulans/metabolismo , Celulase/metabolismo , Celulose/análogos & derivados , Etanol/metabolismo , Fermentação , Hidrólise , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...