Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurogenet ; 38(1): 19-25, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38884635

RESUMO

HERC2-associated neurodevelopmental-disorders(NDD) encompass a cluster of medical conditions that arise from genetic mutations occurring within the HERC2 gene. These disorders can manifest a spectrum of symptoms that impact the brain and nervous system, including delayed psychomotor development, severe mental retardation, seizures and autistic features. Whole-Exome-Sequencing(WES) was performed on a ten-year-old male patient referred to the genetic center for genetic analysis. Blood samples were collected from the proband, his parents, and his sister to extract DNA. PCR-Sanger-sequencing was utilized to validate the findings obtained from WES. In order to obtain a more thorough understanding of the impact of the mutation, an extensive analysis was conducted using bioinformatics tools. WES data analysis identified a homozygous single nucleotide change(C > T) at position c14215 located in exon ninety-two of the HERC2 gene (NC_000015.10(NM_004667.6):c.14215C > T). The absence of this mutation among our cohort composed of four hundred normal healthy adults from the same ethnic group, and its absence in any other population database, confirms the pathogenicity of the mutation. This study revealed that the substitution of arginine with a stop codon within the Hect domain caused a premature stop codon at position 4739(p.Arg4739Ter). This mutation significantly results in the production of a truncated HERC2 protein with an incomplete HECT domain. In the final stage of ubiquitin attachment, HECT E3 ubiquitin ligases play a catalytic role by creating a thiolester intermediate using their conserved catalytic cysteine (Cys4762). This intermediate is formed before ubiquitin is transferred to a substrate protein. The truncation of the HERC2 protein is expected to disrupt its ability to perform this function, which could potentially hinder important regulatory processes related to the development and maintenance of synapses. The identification of a novel pathogenic variant, NC_000015.10(NM_004667.6):c.14215C > T, located within the ninety-two exon of the HERC2 gene, is notable for its association with an autosomal recessive inheritance pattern in cases of Intellectual Developmental Disorder(IDD). In the end, this variant could potentially play a part in the underlying mechanisms leading to the onset of intellectual developmental disorder.


Assuntos
Biologia Computacional , Fatores de Troca do Nucleotídeo Guanina , Deficiência Intelectual , Ubiquitina-Proteína Ligases , Humanos , Masculino , Ubiquitina-Proteína Ligases/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Deficiência Intelectual/genética , Biologia Computacional/métodos , Criança , Sequenciamento do Exoma/métodos , Mutação
2.
Mol Syndromol ; 14(6): 516-522, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058752

RESUMO

Background: Waardenburg syndrome (WS) is an inherited heterogeneous auditory pigmentary syndrome, divided into at least four types and characterized by iris heterochromia, white forelock, prominent nasal root, dystopia canthorum, middle eyebrow hypertrichosis, and deafness. Pathogenic variants in the SOX10 gene have been reported to be involved in WS disease. Methods: Whole exome sequencing (WES) was conducted on a 24-year-old male, who originated from Iranian Azeri Turkish ethnic group, with symptoms of deafness and blue eyes from brown-eyed parents. Web-based tools including Mutation Taster, VarSome, SIFT, Human Splicing Finder (HSF), and I-TASSER, were used for bioinformatics analysis. To verify the WES findings, DNAs taken from the blood samples of all family members were subjected to PCR-Sanger sequencing. Results: A novel heterozygous pathogenic variant, NC_000022.11 (NM_006941):c.428+1G>T, located in the second intron of the SOX10 gene and disrupting the splicing site, was identified in the proband. Sanger sequencing was applied on the proband and his parents. The results showed that the variant was a de novo pathogenic variant with an autosomal dominant inheritance pattern. Conclusions: Identification of a novel de novo pathogenic variant, NC_000022.11 (NM_006941):c.428+1G>T, in the second intron of the SOX10 gene with autosomal dominant inheritance pattern.

3.
Mol Biol Rep ; 50(10): 8771-8775, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573280

RESUMO

BACKGROUND: Severe combined immune deficiencies (SCIDs) are genetically heterogeneous disorders that lead to the absence or malfunction of adaptive immune cells, including T- and B-cells. Pathogenic variants in the RAG2 gene are associated with this disease. METHODS: A couple with consanguineous marriage from the Iranian-Azeri-Turkish ethnic group was referred to the genetic lab. Two children of this family died due to SCID disease with symptoms of skin granulomas, lack of developed T- and B-cells, and intact NK cells. To infer their genotypes, DNA samples obtained from the parents were subjected to whole-exome sequencing (WES). RESULTS: WES data analysis revealed that both parents were carriers of a pathogenic variant, NC_000011.10 (NM_000536.4):c.1268G > C, in the RAG2 gene. This variant was absent in our cohort of 400 healthy individuals from the same ethnic group. To gain insight into the consequence of the variant on the protein function, further analysis was performed by applying bioinformatics tools. This study revealed that the replacement of cysteine with serine at the zinc-binding domain diminished the domain's affinity to zinc ion, resulting in the loss of the mutant protein's ability to bind to the recombination signal sequence (RSS). The formation of the RAG2-RSS complex is vital for T- and B-cell development. CONCLUSION: The identification of a novel pathogenic variant, c.1268G > C, revealed that this variant in the zinc-binding domain diminished the affinity of the zinc ion to the mutant protein and consequently led to the loss of its ability to bind to the RSS.


Assuntos
Proteínas de Ligação a DNA , Imunodeficiência Combinada Severa , Animais , Criança , Humanos , Camundongos , Proteínas de Ligação a DNA/metabolismo , Irã (Geográfico) , Mutação com Perda de Função , Camundongos SCID , Mutação/genética , Proteínas Nucleares/genética , Dedos de Zinco PHD , Imunodeficiência Combinada Severa/genética , Zinco
4.
J Genet ; 1022023.
Artigo em Inglês | MEDLINE | ID: mdl-36823680

RESUMO

Congenital fibre-type disproportion (CFTD) with myopathy, is a genetically heterogeneous disease in which there is relative hypotrophy of type-1-muscle-fibres compared to type-2-fibres on skeletal muscle biopsy. The classical characteristics of CFTD are infantile hypotonia and nonprogressive muscle weakness with a broad range of clinical manifestations. Pathogenic mutations in the HACD1 gene encoding 3-hydroxyacyl-CoA-dehydratase-1 have recently been reported to be associated with this disease. Whole-exome sequencing (WES) was conducted in a 12-year-old girl born to consanguineous parents from the Iranian-Azeri-Turkish population. She was diagnosed with congenital myopathy at the age of 4-month-old due to hypotonia and abnormal electromyography. DNAs were extracted from the blood samples of the proband and her parents, and subjected to PCR-Sanger-sequencing to confirm the WES result. WES data analysis identified a homozygous single nucleotide change (A>T) at position c.785-2 located in intron 6 of the HACD1 gene (NC_000010.11(NM_014241.4):c.785-2A>T). This novel mutation located at the splice-acceptor site is disturbing the splicing procedure. The absence of this mutation among our control group (100 normal healthy adults from the same ethnic group) and not being reported in any other population database confirms the pathogenicity of this mutation. Bioinformatics analysis also classified this variant as a pathogenic mutation. PCR-Sanger-sequencing data analysis confirmed the WES result in the proband and showed that the parents were carriers for the mutation. A substitution (NC_000010.11(NM_014241.4):c.785-2A>T) mutation resulted in the removal of the splicing acceptor site at the HACD1 gene. This pathogenic mutation is associated with CFTD disease.


Assuntos
Hipotonia Muscular , Miopatias Congênitas Estruturais , Adulto , Criança , Feminino , Humanos , Lactente , Irã (Geográfico) , Hipotonia Muscular/genética , Mutação , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Linhagem , Sítios de Splice de RNA
5.
Curr Genomics ; 24(6): 345-353, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38327652

RESUMO

Background: The ATM gene encodes a multifunctional kinase involved in important cellular functions, such as checkpoint signaling and apoptosis, in response to DNA damage. Bi-allelic pathogenic variants in this gene cause Ataxia Telangiectasia (AT), while carriers of ATM pathogenic variants are at increased risk of cancer depending on the pathogenicity of the variant they carry. Identifying pathogenic variants can aid in the management of the disease in carriers. Methods: Whole-exome sequencing (WES) was performed on three unrelated patients from the Iranian-Azeri Turkish ethnic group referred to a genetic center for analysis. WES was also conducted on 400 individuals from the same ethnic group to determine the frequencies of all ATM variants. Blood samples were collected from the patients and their family members for DNA extraction, and PCR-Sanger sequencing was performed to confirm the WES results. Results: The first proband with AT disease had two novel compound heterozygote variants (c.2639-2A>T, c.8708delC) in the ATM gene revealed by WES analysis, which was potentially/likely pathogenic. The second proband with bi-lateral breast cancer had a homozygous pathogenic variant (c.6067G>A) in the ATM gene identified by WES analysis. The third case with a family history of cancer had a heterozygous synonymous pathogenic variant (c.7788G>A) in the ATM gene found by WES analysis. Sanger sequencing confirmed the WES results, and bioinformatics analysis of the mutated ATM RNA and protein structure added evidence for the potential pathogenicity of the novel variants. WES analysis of the cohort revealed 38 different variants, including a variant (rs1800057, ATM:c.3161C>G, p.P1054R) associated with prostate cancer that had a higher frequency in our cohort. Conclusion: Genetic analysis of three unrelated families with ATM-related disorders discovered two novel pathogenic variants. A homozygous missense pathogenic variant was identified in a woman with bi-lateral breast cancer, and a synonymous but pathogenic variant was found in a family with a history of different cancers.

6.
Ophthalmic Genet ; 43(5): 609-614, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35726576

RESUMO

BACKGROUND: Cataract is mainly due to the presence of high molecular weight protein, which disrupts the normal function of the lens. Pathogenic variants in Gap Junction protein alpha-8 (GJA8) have been associated with autosomal dominant congenital nuclear cataract. In general, mutations in those genes that have important functions in lens development lead to congenital cataract. METHODS: We conducted whole-exome sequencing (WES) in a four-year-old male patient referred to the genetic center for genetic analysis. He had developed cataract at an early age. DNAs were extracted from the blood samples of all family members and subjected to PCR-Sanger sequencing to confirm the WES results. RESULTS: WES analysis on the proband revealed two mutations in the GJA8 gene (c.G12C, c.G58A). His mother, alongside several other members of the third-generation family, had developed cataract. Sanger sequencing of the interested regions showed that these two mutations were co-segregated in all affected members. However, none of the healthy individuals carried these mutations confirming that these two mutations are located in the same allele (complex allele). Bioinformatics analysis of the mutated GJA8 RNA and protein structure confirmed the pathogenicity of the cis-mutations. CONCLUSIONS: Genetic segregation analysis in a three-generation family and also bioinformatics analysis showed that the complex-allele containing c.G12C+c.G58A mutations in the GJA8 gene is a pathogenic variant that causes autosomal-dominant congenital nuclear cataract.


Assuntos
Catarata , Conexinas , Catarata/congênito , Catarata/genética , Pré-Escolar , Conexinas/química , Conexinas/genética , Análise Mutacional de DNA , Humanos , Irã (Geográfico) , Masculino , Mutação , Linhagem , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...