Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta Med ; 90(4): 298-304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219733

RESUMO

Silymarin, a widely-used hepatoprotective agent, has shown antitumor properties in both in vitro and animal studies. Currently, there is limited knowledge regarding silymarin's antitelomerase effects on human colorectal cancer and hepatocyte carcinoma cells. In this study, we investigated the antiproliferative and antitelomerase effects of silymarin on four human colorectal cancer and HepG2 hepatocyte carcinoma cell lines. The cell viability and telomerase activity were assessed using MTT and the telomerase repeat amplification protocol assay, respectively. We also investigated the effects of silymarin on the expression of human telomerase reverse transcriptase and its promoter methylation in HepG2 cells by real-time RT-PCR and methylation-specific PCR, respectively. Silymarin treatment inhibited cell proliferation and telomerase activity in all cancer cells. After 24 h of treatment, silymarin exhibited IC50 values ranging from 19 - 56.3 µg/mL against these cancer cells. A 30-min treatment with silymarin at the IC50 concentration effectively inhibited telomerase activity in cell-free extracts of both colorectal cancer and hepatocyte carcinoma cells. Treatment of HepG2 cells with 10 and 30 µg/mL of silymarin for 48 h resulted in a decrease in human telomerase reverse transcriptase expression to 75 and 35% of the level observed in the untreated control (p < 0.01), respectively. Treatment with silymarin (10, 30, and 60 µg/mL) for 48 h did not affect human telomerase reverse transcriptase promoter methylation in HepG2 cells. In conclusion, our findings suggest that silymarin inhibits cancer cell growth by directly inhibiting telomerase activity and downregulating its human telomerase reverse transcriptase catalytic subunit. However, silymarin did not affect human telomerase reverse transcriptase promoter methylation at the concentrations of 10 - 60 µg/mL used in this study.


Assuntos
Carcinoma Hepatocelular , Neoplasias Colorretais , Neoplasias Hepáticas , Silimarina , Telomerase , Animais , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Silimarina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Telomerase/genética , Telomerase/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico
2.
Avicenna J Phytomed ; 13(5): 513-530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089420

RESUMO

Objective: The current study assessed hepatoprotective effects of Sargassum boveanum (S. boveanum) in cholestatic rats. To induce cholestasis, bile duct ligation (BDL) was utilized. Materials and Methods: Five groups of Sprague-Dawley rats including Sham and four BDL groups were assigned to receive vehicle (BDL-V) or ethanolic extract of S. boveanum at 100 (BDL-SE 100), 200 (BDL-SE 200) and 500 (BDL-SE 500) mg/kg/day for seven days. Results: BDL group receiving the vehicle (BDL-V) had substantially increased blood levels of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, total, and indirect bilirubin in comparison to the sham group. S. boveanum significantly decreased these variables compared to the BDL-V group. Hepatic malondialdehyde and tumor necrosis factor-α (TNF-α) level, and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and TNF-α gene expression were higher in BDL-V rats compared to the sham group but these were reduced markedly in BDL groups receiving S. boveanum in comparison to the BDL-V group. BDL-V group had a significantly lower hepatic glutathione value, glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity and gene expression of SOD, GPx, Nrf2, HO-1 in comparison to the sham group. S. boveanum prevented the decrease of these variables. The histopathological assay showed marked bile ducts proliferation, portal inflammation, and hepatocellular damage in the BDL-V group and S. boveanum administration remarkably reduced hepatic injury. Gas chromatography-mass spectroscopy (GC-MS) analysis revealed that S. boveanum ethanolic extract contained 39 active compounds. Conclusion: S. boveanum treatment significantly ameliorated cholestatic hepatic injury via anti-oxidative and anti-inflammatory effects.

3.
Ageing Res Rev ; 65: 101211, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186670

RESUMO

Neurodegenerative diseases (NDs) cause progressive loss of neurons in nervous system. NDs are categorized as acute NDs such as stroke and head injury, besides chronic NDs including Alzheimer's, Parkinson's, Huntington's diseases, Friedreich's Ataxia, Multiple Sclerosis. The exact etiology of NDs is not understood but oxidative stress, inflammation and synaptic dysfunction are main hallmarks. Oxidative stress leads to free radical attack on neural cells which contributes to protein misfolding, glia cell activation, mitochondrial dysfunction, impairment of DNA repair system and subsequently cellular death. Neural stem cells (NSCs) support adult neurogenesis in nervous system during injuries which is limited to certain regions in brain. NSCs can differentiate into the neurons, astrocytes or oligodendrocytes. Impaired neurogenesis and inadequate induction of neurogenesis are the main obstacles in treatment of NDs. Protection of neural cells from oxidative damages and supporting neurogenesis are promising strategies to treat NDs. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcriptional master regulator that maintains the redox homeostasis in cells by provoking expression of antioxidant, anti-inflammatory and cytoprotective genes. Nrf2 can strongly influence the NSCs function and fate determination by reducing levels of reactive oxygen species in benefit of NSC survival and neurogenesis. In this review we will summarize the role of Nrf2 in NSC function, and exogenous and endogenous therapeutic strategies in treatment of NDs.


Assuntos
Células-Tronco Neurais , Doenças Neurodegenerativas , Diferenciação Celular , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Estresse Oxidativo
4.
Pathol Oncol Res ; 26(2): 1165-1173, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31183614

RESUMO

Previous proteomic studies have identified alpha 1-antitrypsin (A1AT) as a potential serum biomarker for colorectal cancer (CRC). In this case-control study, we evaluated plasma A1AT concentration and activity as a biomarker for the early diagnosis of colorectal cancer in a group of 113 sporadic CRC patients. We also analyzed A1AT gene promoter methylation, and genotypes in this group of CRC patients. The plasma A1AT and CEA concentrations were measured using the nephelometric and ELISA methods, respectively. A1AT activity was determined by Trypsin Inhibitor Capacity assay. The genomic DNA from blood samples were subjected to Z and S genotype analysis using PCR-RFLP method and the gene promoter methylation in tumors and their adjacent normal tissues was determined by methylation specific-PCR assay. The plasma levels of A1AT and CEA in patients (median, 2.3 g/L and 5.96 ng/ml, respectively) were significantly higher than those in healthy controls (medians, 1.43 g/L and 2.57 ng/ml, respectively) (p = 0.0001). The plasma A1AT activity and concentrations were positively correlated with the tumor stage and well-discriminated between early and advanced stages. The A1AT activity in plasma was the most useful marker for CRC diagnosis (median 4.8 mmol/min/ml in cases vs 1.91 mmol/min/ml in controls, p = 0.0001). No deficient Z or S alleles of A1AT was observed in patients' genotype and the gene promoter tends to be more methylated in normal mucosa than in tumor tissues. We conclude that plasma A1AT activity has better sensitivity and specificity than CEA measurement for the early detection of CRC. Promoter demethylation might play a role in increasing plasma A1AT levels in CRC patients.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer , alfa 1-Antitripsina/sangue , Idoso , Estudos de Casos e Controles , Neoplasias Colorretais/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
5.
Int J Mol Cell Med ; 5(2): 80-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27478804

RESUMO

Understanding the mechanism of tumor resistance is critical for cancer therapy. In this study, we investigated the effect of carcinoembryonic antigen (CEA) overexpression on UV-and 5-fluorouracil (5-FU)-induced apoptosis and autophagy in colorectal cancer cells. We used histone deacetylase (HDAC) inhibitor, NaB and DNA demethylating agent, 5-azacytidine (5-AZA) to induce CEA expression in HT29/219 and SW742 colorectal cancer cell lines. MTT assay was used to measure IC50 value of the cells exposed to graded concentrations of 5- FU with either 0.1 mM NaB or 1 µM 5-AZA for 72 h . Using CHO- and SW742-CEA transfectants, we also investigated the effect of CEA expression on UV- and 5-FU-induced apoptosis and autophagy. Treatment of HT29/219 cell line with NaB and 5-AZA increased CEA expression by 29% and 31%, respectively. Compared with control cells, the IC50 value for 5-FU of NaB and 5-AZA-treated cells increased by 40% and 57%, respectively. Treatment of SW742 cells with NaB or 5-AZA increased neither CEA expression nor the IC50 value for 5-FU. In comparison to parental cells, CEA expression also significantly protected transfected cells against UV-induced apoptosis. Decreased proportions of autophagy and apoptosis were also observed in 5-FU treated SW742- and CHO-CEA transfectants. We conclude that CEA expression can effectively protect colorectal cancer cells against radiation and drug-induced apoptosis and autophagy.

6.
Biotechnol Lett ; 38(10): 1683-90, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27314477

RESUMO

OBJECTIVES: Alpha-1 antitrypsin (A1AT) deficiency is associated with emphysema and liver disease. Only plasma-derived A1AT protein is available for augmentation therapy. Recombinant A1AT (recA1AT) protein expressed in various types of available hosts are either non-glycosylated or aberrantly glycosylated resulting into reduced stability and biological activity. To overcome these limitations, we have used the human liver HepG2 cell line to produce recA1AT protein. RESULTS: HepG2 cells were transfected by A1AT cDNA and cell populations were generated that stably overexpressed A1AT protein. Real-time RT-PCR and rocket immunoelectrophoresis of cell culture supernatants indicated that the transfection resulted more than two-fold increase in A1AT production compared to that of control parental cells. Immunoblot analysis showed that both plasma and HepG2-produced A1AT proteins have identical molecular weight in either glycosylated or deglycosylated form. Partial digestion with PNGase F indicated that the three N-glycosylation sites of recA1AT, like the native A1AT protein in plasma, are occupied. Recombinant A1AT also like the native A1AT was thermostable and could efficiently inhibit trypsin proteolytic activity against BSA and BAPNA chromogenic substrate. The recombinant HepG2 cells cultured in media containing B27 serum free supplement released recA1AT at the same level as in the serum containing media. CONCLUSIONS: RecA1AT production in HepG2 cells grown under serum free condition at a large scale could provide a reliable source of the native protein suitable for therapeutic use in human.


Assuntos
Fígado/metabolismo , Engenharia de Proteínas/métodos , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Células Cultivadas , Meios de Cultura Livres de Soro/química , Glicosilação , Células Hep G2 , Humanos , Peso Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
7.
Cell Mol Biol Lett ; 20(3): 374-84, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26208386

RESUMO

A number of bacterial species, both pathogenic and non-pathogenic, use the human CEACAM family members as receptors for internalization into epithelial cells. The GPI-linked CEA and CEACAM6 might play a role in the innate immune defense, protecting the colon from microbial invasion. Previous studies showed that CEA is released from epithelial cells by an endogenous GPI-PLD enzyme. GPI-PLD activity was reported to be inhibited by several synthetic and natural forms of lipid A. We hypothesized that CEA engagement by Gram-negative bacteria might attenuate CEA release from epithelial cells and that this might facilitate bacterial colonization. We tested the hypothesis by examining the effect of Escherichia coli on CEA release from colorectal cancer cells in a co-culture experiment. A subconfluent monolayer culture of colorectal cancer cells (LS-180, Caco-2 and HT29/219) was incubated with E. coli. While there was a significant reduction in CEA secretion from LS-180 and HT29/219 cells, we found only a small reduction of CEA shedding from Caco-2 cells compared to the level from the untreated control cells. Furthermore, lipid A treatment of LS-180 cells inhibited CEA release from the cells in a dosedependent manner. Western blot analysis of total lysates showed that CEA expression levels in cells co-cultured with bacteria did not differ from those in untreated control cells. These results suggest that lipid A of Gram-negative bacteria might play a role in preventing the release of CEA from mucosal surfaces and promote mucosal colonization by bacteria.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Escherichia coli/fisiologia , Western Blotting , Células CACO-2 , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células HT29 , Interações Hospedeiro-Patógeno , Humanos , Lipídeo A/farmacologia , Fosfolipase D/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...