Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 73(1): 51-56, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847913

RESUMO

In contrast to the well-defined biological feedback loops controlling glucose, the mechanisms by which the body responds to changes in fatty acid availability are less clearly defined. Growth differentiating factor 15 (GDF15) suppresses the consumption of diets high in fat but is paradoxically increased in obese mice fed a high-fat diet. Given this interrelationship, we investigated whether diets high in fat could directly increase GDF15 independently of obesity. We found that fatty acids increase GDF15 levels dose dependently, with the greatest response observed with linolenic acid. GDF15 mRNA expression was modestly increased in the gastrointestinal tract; however, kidney GDF15 mRNA was ∼1,000-fold higher and was increased by more than threefold, with subsequent RNAscope analysis showing elevated expression within the cortex and outer medulla. Treatment of wild-type mice with linolenic acid reduced food intake and body mass; however, this effect disappeared in mice lacking the GDF15 receptor GFRAL. An equal caloric load of glucose did not suppress food intake or reduce body mass in either wild-type or GFRAL-knockout mice. These data indicate that fatty acids such as linolenic acid increase GDF15 and suppress food intake through a mechanism requiring GFRAL. These data suggest that a primary physiological function of GDF15 may be as a fatty acid sensor designed to protect cells from fatty acid overload. ARTICLE HIGHLIGHTS: The mechanisms by which the body responds to changes in fatty acid availability are less clearly defined. We investigated whether diets high in fat could directly increase growth differentiating factor 15 (GDF15) independently of obesity. Fatty acids increase GDF15 and reduce food intake through a GFRAL signaling axis. GDF15 is a sensor of fatty acids that may have important implications for explaining increased satiety after consumption of diets high in fat.


Assuntos
Ingestão de Alimentos , Obesidade , Animais , Camundongos , Ácidos Graxos , Glucose/metabolismo , Ácidos Linolênicos/farmacologia , Camundongos Knockout , Obesidade/metabolismo , RNA Mensageiro
2.
Nature ; 619(7968): 143-150, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380764

RESUMO

Caloric restriction that promotes weight loss is an effective strategy for treating non-alcoholic fatty liver disease and improving insulin sensitivity in people with type 2 diabetes1. Despite its effectiveness, in most individuals, weight loss is usually not maintained partly due to physiological adaptations that suppress energy expenditure, a process known as adaptive thermogenesis, the mechanistic underpinnings of which are unclear2,3. Treatment of rodents fed a high-fat diet with recombinant growth differentiating factor 15 (GDF15) reduces obesity and improves glycaemic control through glial-cell-derived neurotrophic factor family receptor α-like (GFRAL)-dependent suppression of food intake4-7. Here we find that, in addition to suppressing appetite, GDF15 counteracts compensatory reductions in energy expenditure, eliciting greater weight loss and reductions in non-alcoholic fatty liver disease (NAFLD) compared to caloric restriction alone. This effect of GDF15 to maintain energy expenditure during calorie restriction requires a GFRAL-ß-adrenergic-dependent signalling axis that increases fatty acid oxidation and calcium futile cycling in the skeletal muscle of mice. These data indicate that therapeutic targeting of the GDF15-GFRAL pathway may be useful for maintaining energy expenditure in skeletal muscle during caloric restriction.


Assuntos
Metabolismo Energético , Fator 15 de Diferenciação de Crescimento , Músculo Esquelético , Redução de Peso , Animais , Humanos , Camundongos , Depressores do Apetite/metabolismo , Depressores do Apetite/farmacologia , Depressores do Apetite/uso terapêutico , Restrição Calórica , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Fator 15 de Diferenciação de Crescimento/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Receptores Adrenérgicos beta/metabolismo , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...