Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; : e14238, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867381

RESUMO

Growth hormone-releasing hormone-deficient (GHRH-KO) mice have previously been characterized by lower body weight, disproportionately high body fat accumulation, preferential metabolism of lipids compared to carbohydrates, improved insulin sensitivity, and an extended lifespan. That these mice are long-lived and insulin-sensitive conflicts with the notion that adipose tissue accumulation drives the health detriments associated with obesity (i.e., diabetes), and indicates that GH signaling may be necessary for the development of adverse effects linked to obesity. This prompts investigation into the ultimate effect of diet-induced obesity on the lifespan of these long-lived mice. To this end, we initiated high-fat feeding in mid and late-life in GHRH-KO and wild-type (WT) mice. We carried out extensive lifespan analysis coupled with glucose/insulin tolerance testing and indirect calorimetry to gauge the metabolic effect of high-fat dietary stress through adulthood on these mice. We show that under high-fat diet (HFD) conditions, GHRH-KO mice display extended lifespans relative to WT controls. We also show that GHRH-KO mice are more insulin-sensitive and display less dramatic changes in their metabolism relative to WT mice, with GHRH-KO mice fed HFD displaying respiratory exchange ratios and glucose oxidation rates comparable to control-diet fed GHRH-KO mice, while WT mice fed HFD showed significant reductions in these parameters. Our results indicate that GH deficiency protects against the adverse effects of diet-induced obesity in later life.

2.
Front Endocrinol (Lausanne) ; 11: 579909, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162937

RESUMO

Growth hormone (GH) signaling plays a key role in mediating growth, development, metabolism, and lifespan regulation. However, the mechanisms of longevity regulation at the cellular and molecular level are still not well-understood. An important area in the field of GH research is in the development of advanced transgenic systems for conditional expression of GH signaling in a cell type- or tissue-specific manner. There have been many recent studies conducted to examine the effects of tissue-specific GHR disruption. This review updates our previous discussions on this topic and summarizes recent data on the newly-made tissue-specific GHR-KO mice including intestinal epithelial cells, bone, hematopoietic stem cells, cardiac myocytes, and specific brain regions. The data from these new genetically-engineered mice have a significant impact on our understanding of the local GH signaling function.


Assuntos
Hormônio do Crescimento/metabolismo , Homeostase , Receptores da Somatotropina/fisiologia , Animais , Longevidade , Camundongos , Camundongos Knockout , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...