Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 9(1): 366-377, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25284795

RESUMO

Hypothalamic endoplasmic reticulum (ER) stress is a key mechanism leading to obesity. Here, we demonstrate that ceramides induce lipotoxicity and hypothalamic ER stress, leading to sympathetic inhibition, reduced brown adipose tissue (BAT) thermogenesis, and weight gain. Genetic overexpression of the chaperone GRP78/BiP (glucose-regulated protein 78 kDa/binding immunoglobulin protein) in the ventromedial nucleus of the hypothalamus (VMH) abolishes ceramide action by reducing hypothalamic ER stress and increasing BAT thermogenesis, which leads to weight loss and improved glucose homeostasis. The pathophysiological relevance of this mechanism is demonstrated in obese Zucker rats, which show increased hypothalamic ceramide levels and ER stress. Overexpression of GRP78 in the VMH of these animals reduced body weight by increasing BAT thermogenesis as well as decreasing leptin and insulin resistance and hepatic steatosis. Overall, these data identify a triangulated signaling network involving central ceramides, hypothalamic lipotoxicity/ER stress, and BAT thermogenesis as a pathophysiological mechanism of obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Ceramidas/metabolismo , Hipotálamo/metabolismo , Obesidade/etiologia , Termogênese/fisiologia , Animais , Estresse do Retículo Endoplasmático , Resistência à Insulina/fisiologia , Masculino , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Redução de Peso
2.
Diabetes ; 63(10): 3242-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24848071

RESUMO

Rigorous control of substrate oxidation by humoral factors is essential for maintaining metabolic homeostasis. During feeding and fasting cycles, carbohydrates and fatty acids are the two primary substrates in oxidative metabolism. Here, we report a novel role for the peptide hormone adropin in regulating substrate oxidation preferences. Plasma levels of adropin increase with feeding and decrease upon fasting. A comparison of whole-body substrate preference and skeletal muscle substrate oxidation in adropin knockout and transgenic mice suggests adropin promotes carbohydrate oxidation over fat oxidation. In muscle, adropin activates pyruvate dehydrogenase (PDH), which is rate limiting for glucose oxidation and suppresses carnitine palmitoyltransferase-1B (CPT-1B), a key enzyme in fatty acid oxidation. Adropin downregulates PDH kinase-4 (PDK4) that inhibits PDH, thereby increasing PDH activity. The molecular mechanisms of adropin's effects involve acetylation (suggesting inhibition) of the transcriptional coactivator PGC-1α, downregulating expression of Cpt1b and Pdk4. Increased PGC-1α acetylation by adropin may be mediated by inhibiting Sirtuin-1 (SIRT1), a PGC-1α deacetylase. Altered SIRT1 and PGC-1α activity appear to mediate aspects of adropin's metabolic actions in muscle. Similar outcomes were observed in fasted mice treated with synthetic adropin. Together, these results suggest a role for adropin in regulating muscle substrate preference under various nutritional states.


Assuntos
Jejum/metabolismo , Ácidos Graxos/metabolismo , Músculo Esquelético/metabolismo , Proteínas/metabolismo , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Knockout , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , Proteínas/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Behav Brain Res ; 256: 291-7, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23973755

RESUMO

Carnitine palmitoyltransferase 1c (CPT1C), a brain-specific protein localized in the endoplasmic reticulum of neurons, is expressed in almost all brain regions, but its only known functions to date are involved in the hypothalamic control of energy homeostasis and in hippocampus-dependent spatial learning. To identify other physiological and behavioral functions of this protein, we performed a battery of neurological tests on Cpt1c-deficient mice. The animals showed intact autonomic and sensory systems, but some motor disturbances were observed. A more detailed study of motor function revealed impaired coordination and gait, severe muscle weakness, and reduced daily locomotor activity. Analysis of motor function in these mice at ages of 6-24 weeks showed that motor disorders were already present in young animals and that impairment increased progressively with age. Analysis of CPT1C expression in different motor brain areas during development revealed that CPT1C levels were low from birth to postnatal day 10 and then rapidly increased peaking at postnatal day 21, which suggests that CPT1C plays a relevant role in motor function during and after weaning. As CPT1C is known to regulate ceramide levels, we measured these biolipids in different motor areas in adult mice. Cerebellar, striatum, and motor cortex extracts from Cpt1c knockout mice showed reduced levels of ceramide and its derivative sphingosine when compared to wild-type animals. Our results indicate that altered ceramide metabolism in motor brain areas induced by Cpt1c deficiency causes progressive motor dysfunction from a young age.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Carnitina O-Palmitoiltransferase/deficiência , Transtornos dos Movimentos/fisiopatologia , Animais , Animais Recém-Nascidos , Western Blotting , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Ceramidas/metabolismo , Progressão da Doença , Marcha/fisiologia , Masculino , Camundongos Knockout , Atividade Motora/fisiologia , Debilidade Muscular/fisiopatologia , Exame Neurológico , Reflexo/fisiologia , Teste de Desempenho do Rota-Rod , Esfingosina/metabolismo
4.
Diabetes ; 62(7): 2329-37, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23493572

RESUMO

Recent data suggest that ghrelin exerts its orexigenic action through regulation of hypothalamic AMP-activated protein kinase pathway, leading to a decline in malonyl-CoA levels and desinhibition of carnitine palmitoyltransferase 1A (CPT1A), which increases mitochondrial fatty acid oxidation and ultimately enhances the expression of the orexigenic neuropeptides agouti-related protein (AgRP) and neuropeptide Y (NPY). However, it is unclear whether the brain-specific isoform CPT1C, which is located in the endoplasmic reticulum of neurons, may play a role in this action. Here, we demonstrate that the orexigenic action of ghrelin is totally blunted in CPT1C knockout (KO) mice, despite having the canonical ghrelin signaling pathway activated. We also demonstrate that ghrelin elicits a marked upregulation of hypothalamic C18:0 ceramide levels mediated by CPT1C. Notably, central inhibition of ceramide synthesis with myriocin negated the orexigenic action of ghrelin and normalized the levels of AgRP and NPY, as well as their key transcription factors phosphorylated cAMP-response element-binding protein and forkhead box O1. Finally, central treatment with ceramide induced food intake and orexigenic neuropeptides expression in CPT1C KO mice. Overall, these data indicate that, in addition to formerly reported mechanisms, ghrelin also induces food intake through regulation of hypothalamic CPT1C and ceramide metabolism, a finding of potential importance for the understanding and treatment of obesity.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Ceramidas/metabolismo , Ingestão de Alimentos/fisiologia , Grelina/farmacologia , Hipotálamo/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Carnitina O-Palmitoiltransferase/genética , Ingestão de Alimentos/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
5.
J Biol Chem ; 287(25): 21224-32, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22539351

RESUMO

The brain-specific isoform carnitine palmitoyltransferase 1C (CPT1C) has been implicated in the hypothalamic regulation of food intake and energy homeostasis. Nevertheless, its molecular function is not completely understood, and its role in other brain areas is unknown. We demonstrate that CPT1C is expressed in pyramidal neurons of the hippocampus and is located in the endoplasmic reticulum throughout the neuron, even inside dendritic spines. We used molecular, cellular, and behavioral approaches to determine CPT1C function. First, we analyzed the implication of CPT1C in ceramide metabolism. CPT1C overexpression in primary hippocampal cultured neurons increased ceramide levels, whereas in CPT1C-deficient neurons, ceramide levels were diminished. Correspondingly, CPT1C knock-out (KO) mice showed reduced ceramide levels in the hippocampus. At the cellular level, CPT1C deficiency altered dendritic spine morphology by increasing immature filopodia and reducing mature mushroom and stubby spines. Total protrusion density and spine head area in mature spines were unaffected. Treatment of cultured neurons with exogenous ceramide reverted the KO phenotype, as did ectopic overexpression of CPT1C, indicating that CPT1C regulation of spine maturation is mediated by ceramide. To study the repercussions of the KO phenotype on cognition, we performed the hippocampus-dependent Morris water maze test on mice. Results show that CPT1C deficiency strongly impairs spatial learning. All of these results demonstrate that CPT1C regulates the levels of ceramide in the endoplasmic reticulum of hippocampal neurons, and this is a relevant mechanism for the correct maturation of dendritic spines and for proper spatial learning.


Assuntos
Carnitina O-Palmitoiltransferase/biossíntese , Ceramidas/metabolismo , Dendritos/enzimologia , Metabolismo Energético/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Metabolismo dos Lipídeos/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Células Piramidais/enzimologia , Animais , Comportamento Animal/fisiologia , Carnitina O-Palmitoiltransferase/genética , Células Cultivadas , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Erros Inatos do Metabolismo Lipídico/enzimologia , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/patologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Células Piramidais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...