Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38915495

RESUMO

Inverted formin-2 (INF2) gene mutations are among the most common causes of genetic focal segmental glomerulosclerosis (FSGS) with or without Charcot-Marie-Tooth (CMT) disease. Recent studies suggest that INF2, through its effects on actin and microtubule arrangement, can regulate processes including vesicle trafficking, cell adhesion, mitochondrial calcium uptake, mitochondrial fission, and T-cell polarization. Despite roles for INF2 in multiple cellular processes, neither the human pathogenic R218Q INF2 point mutation nor the INF2 knock-out allele is sufficient to cause disease in mice. This discrepancy challenges our efforts to explain the disease mechanism, as the link between INF2-related processes, podocyte structure, disease inheritance pattern, and their clinical presentation remains enigmatic. Here, we compared the kidney responses to puromycin aminonucleoside (PAN) induced injury between R218Q INF2 point mutant knock-in and INF2 knock-out mouse models and show that R218Q INF2 mice are susceptible to developing proteinuria and FSGS. This contrasts with INF2 knock-out mice, which show only a minimal kidney phenotype. Co-localization and co-immunoprecipitation analysis of wild-type and mutant INF2 coupled with measurements of cellular actin content revealed that the R218Q INF2 point mutation confers a gain-of-function effect by altering the actin cytoskeleton, facilitated in part by alterations in INF2 localization. Differential analysis of RNA expression in PAN-stressed heterozygous R218Q INF2 point-mutant and heterozygous INF2 knock-out mouse glomeruli showed that the adhesion and mitochondria-related pathways were significantly enriched in the disease condition. Mouse podocytes with R218Q INF2, and an INF2-mutant human patient's kidney organoid-derived podocytes with an S186P INF2 mutation, recapitulate the defective adhesion and mitochondria phenotypes. These results link INF2-regulated cellular processes to the onset and progression of glomerular disease. Thus, our data demonstrate that gain-of-function mechanisms drive INF2-related FSGS and explain the autosomal dominant inheritance pattern of this disease.

2.
Antioxidants (Basel) ; 12(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38136156

RESUMO

Background: Preeclampsia (PE) is a hypertensive disorder of pregnancy that is associated with substantial morbidity and mortality for the mother and fetus. Reduced nitric oxide bioavailability and oxidative stress contribute to the maternal and fetal pathophysiology of PE. In this study, we evaluated the efficacy of a novel dual-function nitric oxide donor/redox modulator, AKT-1005, in reducing PE symptoms in a mouse model of PE. Method: The potential therapeutic effect of AKT-1005 was tested in an animal model of Ad.sFlt-1-induced hypertension, proteinuria and glomerular endotheliosis, a model of PE. Pregnant Ad.sFlt-1-overexpressing CD1 mice were randomized into groups administered AKT-1005 (20 mg/kg) or a vehicle using a minipump on gd11 of pregnancy, and the impact on blood pressure and renal and placental damage were assessed. Results: In healthy female mice, ex vivo treatment of resistance vessels with AKT-1005 induced vasorelaxation, and 6 days of treatment in vivo did not significantly alter blood pressure with or without pregnancy. When given for 6 days during pregnancy along with Ad.sFlt-1-induced PE, AKT-1005 significantly increased plasma nitrate levels and reduced hypertension, renal endotheliosis and plasma cystatin C. In the placenta, AKT-1005 improved placental function, with reduced oxidative stress and increased endothelial angiogenesis, as measured by CD31 staining. As such, AKT-1005 treatment attenuated the Ad.sFlt-1-induced increase in placental and free plasma soluble endoglin expression. Conclusions: These data suggest that AKT-1005 significantly attenuates the sFlt-1-induced PE phenotypes by inhibiting oxidative stress, the anti-angiogenic response, and increasing NO bioavailability. Additional research is warranted to investigate the role of AKT-1005 as a novel therapeutic agent for vascular disorders such as preeclampsia.

3.
Biology (Basel) ; 12(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37759628

RESUMO

BACKGROUND: Preeclampsia (PE) is a severe, life-threatening complication during pregnancy (~5-7%), and no causative treatment is available. Early aberrant spiral artery remodeling is associated with placental stress and the release of oxygen radicals and other reactive oxygen species (ROS) in the placenta. This precedes the production of anti-angiogenic factors, which ultimately leads to endothelial and trophoblast damage and the key features of PE. We tested whether a novel dual-function redox modulator-AKT-1005-can effectively reduce placental oxidative stress and alleviate PE symptoms in vitro. METHOD: Isolated human villous explants were exposed to hypoxia and assessed to determine whether improving cell-redox function with AKT-1005 diminished ROS production, mitochondrial stress, production of the transcription factor HIF1A, and downstream anti-angiogenic responses (i.e., sFLT1, sEng production). MitoTEMPO was used as a reference antioxidant. RESULTS: In our villous explant assays, pretreatment with AKT-1005 reduced mitochondrial-derived ROS production, reduced HIF-1A, sFLT1, and sEng protein expression, while increasing VEGF in hypoxia-exposed villous trophoblast cells, with better efficiency than MitoTEMPO. In addition, AKT-1005 improved mitochondrial electron chain enzyme activity in the stressed explant culture. CONCLUSIONS: The redox modulator AKT-1005 has the potential to intervene with oxidative stress and can be efficacious for PE therapy. Future studies are underway to assess the in vivo efficacy of HMP.

4.
Antioxidants (Basel) ; 12(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37627573

RESUMO

Preeclampsia (PE) is a pregnancy-specific syndrome affecting 5-7% of patients. There is no effective treatment available. Early abnormal placental development is associated with oxidative stress (OS) and a release of reactive oxygen species (ROS) in the placenta. This phenomenon leads to downstream signaling, Hypoxia Inducible Factor 1A (HIF1A) stabilization and transcription of the anti-angiogenic factors soluble fms-like tyrosine kinase 1 (sFLT1) and soluble endoglin (sEng), which are known to cause endothelial and trophoblast dysfunction and cardinal features of PE: hypertension, proteinuria and, in severe cases, eclampsia. We tested whether 3-(Hydroxymethyl)-1-oxy-2,2,5,5-tetramethylpyrrolidine (HMP)-a nitroxide-type antioxidant molecule-can reduce placental OS and mitigate PE symptoms in vitro. We induced OS in human trophoblast (HTR-8/SVneo) cells with hydrogen peroxide (H2O2) and assessed whether modulating cell redox function with HMP reduces cell injury, mitochondrial stress and HIF1A and sFLT1 production. Pre-treatment with HMP reduced mitochondrial-derived ROS production, restored LC3B expression and reduced HIF1A and sFLT1 expression in H2O2-exposed HTR-8/SVneo trophoblast cells. HMP improved the mitochondrial electron chain enzyme activity, indicating that a reduction in OS alleviates mitochondrial stress and also reduces anti-angiogenic responses. In reducing placental trophoblast OS, HMP presents a potential novel therapeutic approach for the treatment of PE. Future investigation is warranted regarding the in vivo use of HMP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...