Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 52(3): 961-972, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38813817

RESUMO

The dysfunction of many RNA-binding proteins (RBPs) that are heavily disordered, including TDP-43 and FUS, are implicated in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). These proteins serve many important roles in the cell, and their capacity to form biomolecular condensates (BMCs) is key to their function, but also a vulnerability that can lead to misregulation and disease. Matrin-3 (MATR3) is an intrinsically disordered RBP implicated both genetically and pathologically in ALS/FTD, though it is relatively understudied as compared with TDP-43 and FUS. In addition to binding RNA, MATR3 also binds DNA and is implicated in many cellular processes including the DNA damage response, transcription, splicing, and cell differentiation. It is unclear if MATR3 localizes to BMCs under physiological conditions, which is brought further into question due to its lack of a prion-like domain. Here, we review recent studies regarding MATR3 and its roles in numerous physiological processes, as well as its implication in a range of diseases.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Proteínas Associadas à Matriz Nuclear , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Demência Frontotemporal/metabolismo , Demência Frontotemporal/genética , Proteínas de Ligação a DNA/metabolismo , Animais , Dano ao DNA , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/química
2.
bioRxiv ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38617354

RESUMO

TAR DNA-binding protein 43 (TDP-43) is an RNA binding protein that accumulates as aggregates in the central nervous system of some neurodegenerative diseases. However, TDP-43 aggregation is also a sensitive and specific pathologic feature found in a family of degenerative muscle diseases termed inclusion body myopathy (IBM). TDP-43 aggregates from ALS and FTD brain lysates may serve as self-templating aggregate seeds in vitro and in vivo, supporting a prion-like spread from cell to cell. Whether a similar process occurs in IBM patient muscle is not clear. We developed a mouse model of inducible, muscle-specific cytoplasmic localized TDP-43. These mice develop muscle weakness with robust accumulation of insoluble and phosphorylated sarcoplasmic TDP-43, leading to eosinophilic inclusions, altered proteostasis and changes in TDP-43-related RNA processing that resolve with the removal of doxycycline. Skeletal muscle lysates from these mice also have seeding competent TDP-43, as determined by a FRET-based biosensor, that persists for weeks upon resolution of TDP-43 aggregate pathology. Human muscle biopsies with TDP-43 pathology also contain TDP-43 aggregate seeds. Using lysates from muscle biopsies of patients with IBM, IMNM and ALS we found that TDP-43 seeding capacity was specific to IBM. Surprisingly, TDP-43 seeding capacity anti-correlated with TDP-43 aggregate and vacuole abundance. These data support that TDP-43 aggregate seeds are present in IBM skeletal muscle and represent a unique TDP-43 pathogenic species not previously appreciated in human muscle disease.

3.
Nat Commun ; 15(1): 2436, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499535

RESUMO

Parkinson's disease (PD) is closely linked to α-synuclein (α-syn) misfolding and accumulation in Lewy bodies. The PDZ serine protease HTRA1 degrades fibrillar tau, which is associated with Alzheimer's disease, and inactivating mutations to mitochondrial HTRA2 are implicated in PD. Here, we report that HTRA1 inhibits aggregation of α-syn as well as FUS and TDP-43, which are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The protease domain of HTRA1 is necessary and sufficient for inhibiting aggregation, yet this activity is proteolytically-independent. Further, HTRA1 disaggregates preformed α-syn fibrils, rendering them incapable of seeding aggregation of endogenous α-syn, while reducing HTRA1 expression promotes α-syn seeding. HTRA1 remodels α-syn fibrils by targeting the NAC domain, the key domain catalyzing α-syn amyloidogenesis. Finally, HTRA1 detoxifies α-syn fibrils and prevents formation of hyperphosphorylated α-syn accumulations in primary neurons. Our findings suggest that HTRA1 may be a therapeutic target for a range of neurodegenerative disorders.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Corpos de Lewy/metabolismo
4.
Nat Commun ; 14(1): 6493, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838725

RESUMO

Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD-UMOD), a leading hereditary kidney disease. There are no targeted therapies. In our generated mouse model recapitulating human ADTKD-UMOD carrying a leading UMOD mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are impaired, leading to cGAS-STING activation and tubular injury. Moreover, we demonstrate that inducible tubular overexpression of mesencephalic astrocyte-derived neurotrophic factor (MANF), a secreted endoplasmic reticulum protein, after the onset of disease stimulates autophagy/mitophagy, clears mutant UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, thus protecting kidney function in our ADTKD mouse model. Conversely, genetic ablation of MANF in the mutant thick ascending limb tubular cells worsens autophagy suppression and kidney fibrosis. Together, we have discovered MANF as a biotherapeutic protein and elucidated previously unknown mechanisms of MANF in the regulation of organelle homeostasis, which may have broad therapeutic applications to treat various proteinopathies.


Assuntos
Doenças Renais Policísticas , Humanos , Camundongos , Animais , Autofagia/genética , Homeostase , Fibrose , Fatores de Crescimento Neural/genética
5.
Mol Cell ; 83(18): 3314-3332.e9, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37625404

RESUMO

Hsp104 is an AAA+ protein disaggregase that solubilizes and reactivates proteins trapped in aggregated states. We have engineered potentiated Hsp104 variants to mitigate toxic misfolding of α-synuclein, TDP-43, and FUS implicated in fatal neurodegenerative disorders. Though potent disaggregases, these enhanced Hsp104 variants lack substrate specificity and can have unfavorable off-target effects. Here, to lessen off-target effects, we engineer substrate-specific Hsp104 variants. By altering Hsp104 pore loops that engage substrate, we disambiguate Hsp104 variants that selectively suppress α-synuclein toxicity but not TDP-43 or FUS toxicity. Remarkably, α-synuclein-specific Hsp104 variants emerge that mitigate α-synuclein toxicity via distinct ATPase-dependent mechanisms involving α-synuclein disaggregation or detoxification of soluble α-synuclein conformers. Importantly, both types of α-synuclein-specific Hsp104 variant reduce dopaminergic neurodegeneration in a C. elegans model of Parkinson's disease more effectively than non-specific variants. We suggest that increasing the substrate specificity of enhanced disaggregases could be applied broadly to tailor therapeutics for neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas , Proteínas de Saccharomyces cerevisiae , Animais , Humanos , alfa-Sinucleína/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo
6.
Acta Biomater ; 169: 464-476, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586449

RESUMO

De novo designed peptides that self-assemble into cross-ß rich fibrillar biomaterials have been pursued as an innovative platform for the development of adjuvant- and inflammation-free vaccines. However, they share structural and morphological properties similar to amyloid species implicated in neurodegenerative diseases, which has been a long-standing concern for their successful translation. Here, we comprehensively characterize the amyloidogenic character of the amphipathic self-assembling cross-ß peptide KFE8, compared to pathological amyloid and amyloid-like proteins α-synuclein (α-syn) and TDP-43. Further, we developed plasmid-based DNA vaccines with the KFE8 backbone serving as a scaffold for delivery of a GFP model antigen. We find that expression of tandem repeats of KFE8 is non-toxic and efficiently cleared by autophagy. We also demonstrate that preformed KFE8 fibrils do not cross-seed amyloid formation of α-syn in mammalian cells compared to α-syn preformed fibrils. In mice, vaccination with plasmids encoding the KFE32-GFP fusion protein elicited robust immune responses, inducing production of significantly higher levels of anti-GFP antibodies compared to soluble GFP. Antigen-specific CD8+T cells were also detected in the spleens of vaccinated mice and cytokine profiles from antigen recall assays indicate a balanced Th1/Th2 response. These findings illustrate that cross-ß-rich peptide nanofibers have distinct physicochemical properties from those of pathological amyloidogenic proteins, and are an attractive platform for the development of DNA vaccines with self-adjuvanting properties and improved safety profiles. STATEMENT OF SIGNIFICANCE: Biomaterials comprised of self-assembling peptides hold great promise for the development of new vaccines that do not require use of adjuvants. However, these materials have safety concerns, as they self-assemble into cross-ß rich fibrils that are structurally similar to amyloid species implicated in disease. Here, we comprehensively study the properties of these biomaterials. We demonstrate that they have distinct properties from pathological proteins. They are non-toxic and do not trigger amyloidogenesis. Vaccination of these materials in mice elicited a robust immune response. Most excitingly, our work suggests that this platform could be used to develop DNA-based vaccines, which have few storage requirements. Further, due to their genetic encoding, longer sequences can be generated and the vaccines will be amenable to modification.


Assuntos
Vacinas de DNA , Camundongos , Animais , Peptídeos/química , Adjuvantes Imunológicos/farmacologia , Linfócitos T CD8-Positivos , Materiais Biocompatíveis , Mamíferos
7.
mBio ; 14(4): e0058723, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37195208

RESUMO

Phenol-soluble modulins (PSMs) are the primary proteinaceous component of Staphylococcus aureus biofilms. Residence in the protective environment of biofilms allows bacteria to rapidly evolve and acquire antimicrobial resistance, which can lead to persistent infections such as those caused by methicillin-resistant S. aureus (MRSA). In their soluble form, PSMs hinder the immune response of the host and can increase the virulence potential of MRSA. PSMs also self-assemble into insoluble functional amyloids that contribute to the structural scaffold of biofilms. The specific roles of PSM peptides in biofilms remain poorly understood. Here, we report the development of a genetically tractable yeast model system for studying the properties of PSMα peptides. Expression of PSMα peptides in yeast drives the formation of toxic insoluble aggregates that adopt vesicle-like structures. Using this system, we probed the molecular drivers of PSMα aggregation to delineate key similarities and differences among the PSMs and identified a crucial residue that drives PSM features. Biofilms are a major public health threat; thus, biofilm disruption is a key goal. To solubilize aggregates comprised of a diverse range of amyloid and amyloid-like species, we have developed engineered variants of Hsp104, a hexameric AAA+ protein disaggregase from yeast. Here, we demonstrate that potentiated Hsp104 variants counter the toxicity and aggregation of PSMα peptides. Further, we demonstrate that a potentiated Hsp104 variant can drive the disassembly of preformed S. aureus biofilms. We suggest that this new yeast model can be a powerful platform for screening for agents that disrupt PSM aggregation and that Hsp104 disaggregases could be a promising tool for the safe enzymatic disruption of biofilms. IMPORTANCE Biofilms are complex mixtures secreted by bacteria that form a material in which the bacteria can become embedded. This process transforms the properties of the bacteria, and they become more resistant to removal, which can give rise to multidrug-resistant strains, such as methicillin-resistant Staphylococcus aureus (MRSA). Here, we study phenol-soluble modulins (PSMs), which are amyloidogenic proteins secreted by S. aureus, that become incorporated into biofilms. Biofilms are challenging to study, so we have developed a new genetically tractable yeast model to study the PSMs. We used our system to learn about several key features of the PSMs. We also demonstrate that variants of an amyloid disaggregase, Hsp104, can disrupt the PSMs and, more importantly, dissolve preformed S. aureus biofilms. We propose that our system can be a powerful screening tool and that Hsp104 disaggregases may be a new avenue to explore for biofilm disruption agents.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , Saccharomyces cerevisiae/metabolismo , Biofilmes , Amiloide/genética , Amiloide/metabolismo , Infecções Estafilocócicas/microbiologia , Peptídeos/metabolismo , Fenóis/metabolismo
8.
bioRxiv ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36711449

RESUMO

Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD- UMOD ), one of the leading hereditary kidney diseases, and Alzheimer’s disease etc. There are no targeted therapies. ADTKD is also a genetic form of renal fibrosis and chronic kidney disease, which affects 500 million people worldwide. For the first time, in our newly generated mouse model recapitulating human ADTKD- UMOD carrying a leading UMOD deletion mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are severely impaired, leading to cGAS- STING activation and tubular injury. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a novel endoplasmic reticulum stress-regulated secreted protein. We provide the first study that inducible tubular overexpression of MANF after the onset of disease stimulates autophagy/mitophagy and clearance of the misfolded UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, resulting in protection of kidney function. Conversely, genetic ablation of endogenous MANF upregulated in the mutant mouse and human tubular cells worsens autophagy suppression and kidney fibrosis. Together, we discover MANF as a novel biotherapeutic protein and elucidate previously unknown mechanisms of MANF in regulating organelle homeostasis to treat ADTKD, which may have broad therapeutic application to treat various proteinopathies.

9.
STAR Protoc ; 3(3): 101592, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35928002

RESUMO

This protocol describes the use of fluorescence recovery after photobleaching (FRAP) to investigate the dynamics of Matrin-3 (MATR3) condensates in live budding yeast. We detail how to generate yeast strains containing MATR3 with an enhanced green fluorescent protein (eGFP) tag and induce MATR3-eGFP expression. We provide steps to prepare slides of immobilized yeast cells and perform FRAP imaging and data analysis. This protocol can be broadly applied to study condensate dynamics of a range of proteins in different model systems. For complete details on the use and execution of this protocol, please refer to Sprunger et al. (2022).


Assuntos
Saccharomyces cerevisiae , Saccharomycetales , Recuperação de Fluorescência Após Fotodegradação/métodos , Saccharomyces cerevisiae/genética
10.
iScience ; 25(3): 103900, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35252808

RESUMO

Matrin-3 (MATR3) is a DNA- and RNA-binding protein implicated in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and distal myopathy. Here, we report the development of a yeast model of MATR3 proteotoxicity and aggregation. MATR3 is toxic and forms dynamic shell-like nuclear condensates in yeast. Disease-associated mutations in MATR3 impair condensate dynamics and disrupt condensate morphology. MATR3 toxicity is largely driven by its RNA-recognitions motifs (RRMs). Further, deletion of one or both RRMs drives coalescence of these condensates. Aberrant phase separation of several different RBPs underpins ALS/FTD, and we have engineered Hsp104 variants to reverse this misfolding. Here, we demonstrate that these same variants also counter MATR3 toxicity. We suggest that these Hsp104 variants which rescue MATR3, TDP-43, and FUS toxicity might be employed against a range of ALS/FTD-associated proteins. We anticipate that our yeast model could be a useful platform to screen for modulators of MATR3 misfolding.

11.
Biomolecules ; 11(7)2021 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-34356638

RESUMO

Aberrant protein folding underpins many neurodegenerative diseases as well as certain myopathies and cancers. Protein misfolding can be driven by the presence of distinctive prion and prion-like regions within certain proteins. These prion and prion-like regions have also been found to drive liquid-liquid phase separation. Liquid-liquid phase separation is thought to be an important physiological process, but one that is prone to malfunction. Thus, aberrant liquid-to-solid phase transitions may drive protein aggregation and fibrillization, which could give rise to pathological inclusions. Here, we review prions and prion-like proteins, their roles in phase separation and disease, as well as potential therapeutic approaches to counter aberrant phase transitions.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Priônicas/metabolismo , Proteínas Amiloidogênicas/química , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Doenças Neurodegenerativas/patologia , Transição de Fase , Proteínas Priônicas/química , Domínios Proteicos , Dobramento de Proteína , RNA/química , RNA/farmacologia
12.
Protein Sci ; 30(8): 1667-1685, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34010483

RESUMO

Hsp104, a yeast protein disaggregase, can be potentiated via numerous missense mutations at disparate locations throughout the coiled-coil middle domain (MD). Potentiated Hsp104 variants can counter the toxicity and misfolding of TDP-43, FUS, and α-synuclein, proteins which are implicated in neurodegenerative disorders. However, potentiated MD variants typically exhibit off-target toxicity. Further, it has remained confounding how numerous degenerate mutations confer potentiation, hampering engineering of therapeutic Hsp104 variants. Here, we sought to comprehensively define the key drivers of Hsp104 potentiation. Using scanning mutagenesis, we iteratively studied the effects of modulation at each position in the Hsp104 MD. Screening this library to identify enhanced variants reveals that missense mutations at 26% of positions in the MD yield variants that counter FUS toxicity. Modulation of the helix 2-helix 3/4 MD interface potentiates Hsp104, whereas mutations in the analogous helix 1-2 interface do not. Surprisingly, we find that there is a higher likelihood of enhancing Hsp104 activity against human disease substrates than impairing Hsp104 native function. We find that single mutations can broadly destabilize the MD structure and lead to functional potentiation, suggesting this may be a common mechanism conferring Hsp104 potentiation. Using this approach, we have demonstrated that modulation of the MD can yield engineered variants with decreased off-target effects.


Assuntos
Proteínas de Choque Térmico , Mutagênese Sítio-Dirigida , Domínios Proteicos/genética , Proteínas de Saccharomyces cerevisiae , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína
13.
Elife ; 92020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319748

RESUMO

The AAA+ protein disaggregase, Hsp104, increases fitness under stress by reversing stress-induced protein aggregation. Natural Hsp104 variants might exist with enhanced, selective activity against neurodegenerative disease substrates. However, natural Hsp104 variation remains largely unexplored. Here, we screened a cross-kingdom collection of Hsp104 homologs in yeast proteotoxicity models. Prokaryotic ClpG reduced TDP-43, FUS, and α-synuclein toxicity, whereas prokaryotic ClpB and hyperactive variants were ineffective. We uncovered therapeutic genetic variation among eukaryotic Hsp104 homologs that specifically antagonized TDP-43 condensation and toxicity in yeast and TDP-43 aggregation in human cells. We also uncovered distinct eukaryotic Hsp104 homologs that selectively antagonized α-synuclein condensation and toxicity in yeast and dopaminergic neurodegeneration in C. elegans. Surprisingly, this therapeutic variation did not manifest as enhanced disaggregase activity, but rather as increased passive inhibition of aggregation of specific substrates. By exploring natural tuning of this passive Hsp104 activity, we elucidated enhanced, substrate-specific agents that counter proteotoxicity underlying neurodegeneration.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Agregação Patológica de Proteínas/patologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/metabolismo , Animais , Caenorhabditis elegans , Linhagem Celular , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Escherichia coli , Variação Genética/genética , Células HEK293 , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Dobramento de Proteína , Deficiências na Proteostase/genética , Deficiências na Proteostase/patologia , Proteína FUS de Ligação a RNA/metabolismo , Saccharomyces cerevisiae
14.
PLoS One ; 15(3): e0230198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32155221

RESUMO

Hsp104 is a hexameric AAA+ yeast disaggregase capable of solubilizing disordered aggregates and amyloid. Hsp104 couples ATP hydrolysis to polypeptide translocation through its central channel. Substrate binding by Hsp104 is mediated primarily by two conserved tyrosine residues in nucleotide binding domain (NBD) 1 and NBD2. Recent structural studies have revealed that an additional tyrosine residue (Y650) located in NBD2 appears to contact substrate and may play an important role in Hsp104 function. Here, we functionally analyze the properties of this proposed Hsp104 -substrate interaction. We find that Y650 is not essential for Hsp104 to confer thermotolerance. Supporting these findings, in a potentiated Hsp104 variant background, the Y650A mutation does not abolish potentiation. However, modulation of this site does have subtle effects on the activity of this potentiated Hsp104 variant. We therefore suggest that while Y650 is not essential for Hsp104 function, its modulation may be useful for fine-tuning Hsp104 properties.


Assuntos
Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica/métodos , Proteínas de Choque Térmico HSP70/metabolismo , Modelos Moleculares , Ligação Proteica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
16.
Cell Rep ; 28(8): 2080-2095.e6, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31433984

RESUMO

Hsp104 is an AAA+ protein disaggregase, which can be potentiated via diverse mutations in its autoregulatory middle domain (MD) to mitigate toxic misfolding of TDP-43, FUS, and α-synuclein implicated in fatal neurodegenerative disorders. Problematically, potentiated MD variants can exhibit off-target toxicity. Here, we mine disaggregase sequence space to safely enhance Hsp104 activity via single mutations in nucleotide-binding domain 1 (NBD1) or NBD2. Like MD variants, NBD variants counter TDP-43, FUS, and α-synuclein toxicity and exhibit elevated ATPase and disaggregase activity. Unlike MD variants, non-toxic NBD1 and NBD2 variants emerge that rescue TDP-43, FUS, and α-synuclein toxicity. Potentiating substitutions alter NBD1 residues that contact ATP, ATP-binding residues, or the MD. Mutating the NBD2 protomer interface can also safely ameliorate Hsp104. Thus, we disambiguate allosteric regulation of Hsp104 by several tunable structural contacts, which can be engineered to spawn enhanced therapeutic disaggregases with minimal off-target toxicity.


Assuntos
Proteínas de Ligação a DNA/toxicidade , Proteínas de Choque Térmico/metabolismo , Proteína FUS de Ligação a RNA/toxicidade , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/toxicidade , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Ácido Azetidinocarboxílico/farmacologia , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto/genética , Agregados Proteicos , Domínios Proteicos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
17.
Mol Cell ; 75(3): 415-416, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398319

RESUMO

In Mutant INS-gene-induced Diabetes of Youth (MIDY) syndrome, mutant proinsulin aggregates interfere with the folding of wild-type proinsulin in the endoplasmic reticulum, ultimately decreasing insulin secretion. In this issue of Molecular Cell, Cunningham et al. (2019) identify two mechanisms by which prohormone aggregation is prevented and cleared.


Assuntos
Células Secretoras de Insulina , Proinsulina , Retículo Endoplasmático , Dobramento de Proteína , Controle de Qualidade
18.
J Biol Chem ; 294(29): 11286-11296, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31171724

RESUMO

FUS and EWSR1 are RNA-binding proteins with prion-like domains (PrLDs) that aggregate in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The FUS and EWSR1 genes are also prone to chromosomal translocation events, which result in aberrant fusions between portions of the PrLDs of FUS and EWSR1 and the transcription factors CHOP and FLI. The resulting fusion proteins, FUS-CHOP and EWS-FLI, drive aberrant transcriptional programs that underpin liposarcoma and Ewing's sarcoma, respectively. The translocated PrLDs alter the expression profiles of these proteins and promote their phase separation and aggregation. Here, we report the development of yeast models of FUS-CHOP and EWS-FLI toxicity and aggregation. These models recapitulated several salient features of sarcoma patient cells harboring the FUS-CHOP and EWS-FLI translocations. To reverse FUS and EWSR1 aggregation, we have explored Hsp104, a hexameric AAA+ protein disaggregase from yeast. Previously, we engineered potentiated Hsp104 variants to suppress the proteotoxicity, aggregation, and mislocalization of FUS and other proteins that aggregate in ALS/FTD and Parkinson's disease. Potentiated Hsp104 variants that robustly suppressed FUS toxicity and aggregation also suppressed the toxicity and aggregation of FUS-CHOP and EWS-FLI. We suggest that these new yeast models are powerful platforms for screening for modulators of FUS-CHOP and EWS-FLI phase separation. Moreover, Hsp104 variants might be employed to combat the toxicity and phase separation of aberrant fusion proteins involved in sarcoma.


Assuntos
Proteínas Priônicas/metabolismo , Engenharia de Proteínas , Sarcoma/metabolismo , Neoplasias de Tecidos Moles/metabolismo , Núcleo Celular/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/genética , Fator de Transcrição CHOP/metabolismo
19.
Biophys J ; 116(10): 1856-1872, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31027887

RESUMO

Heat shock protein (Hsp) 104 is a hexameric ATPases associated with diverse cellular activities motor protein that enables cells to survive extreme stress. Hsp104 couples the energy of ATP binding and hydrolysis to solubilize proteins trapped in aggregated structures. The mechanism by which Hsp104 disaggregates proteins is not completely understood but may require Hsp104 to partially or completely translocate polypeptides across its central channel. Here, we apply transient state, single turnover kinetics to investigate the ATP-dependent translocation of soluble polypeptides by Hsp104 and Hsp104A503S, a potentiated variant developed to resolve misfolded conformers implicated in neurodegenerative disease. We establish that Hsp104 and Hsp104A503S can operate as nonprocessive translocases for soluble substrates, indicating a "partial threading" model of translocation. Remarkably, Hsp104A503S exhibits altered coupling of ATP binding to translocation and decelerated dissociation from polypeptide substrate compared to Hsp104. This altered coupling and prolonged substrate interaction likely increases entropic pulling forces, thereby enabling more effective aggregate dissolution by Hsp104A503S.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Choque Térmico/genética , Hidrólise , Cinética , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Agregados Proteicos , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
20.
Structure ; 27(3): 449-463.e7, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30595457

RESUMO

Hsp104 is an AAA+ protein disaggregase with powerful amyloid-remodeling activity. All nonmetazoan eukaryotes express Hsp104 while eubacteria express an Hsp104 ortholog, ClpB. However, most studies have focused on Hsp104 from Saccharomyces cerevisiae and ClpB orthologs from two eubacterial species. Thus, the natural spectrum of Hsp104/ClpB molecular architectures and protein-remodeling activities remains largely unexplored. Here, we report two structures of Hsp104 from the thermophilic fungus Calcarisporiella thermophila (CtHsp104), a 2.70Å crystal structure and 4.0Å cryo-electron microscopy structure. Both structures reveal left-handed, helical assemblies with all domains clearly resolved. We thus provide the highest resolution and most complete view of Hsp104 hexamers to date. We also establish that CtHsp104 antagonizes several toxic protein-misfolding events in vivo where S. cerevisiae Hsp104 is ineffective, including rescue of TDP-43, polyglutamine, and α-synuclein toxicity. We suggest that natural Hsp104 variation is an invaluable, untapped resource for illuminating therapeutic disaggregases for fatal neurodegenerative diseases.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/farmacologia , Mucorales/enzimologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/farmacologia , Humanos , Modelos Moleculares , Peptídeos/antagonistas & inibidores , Conformação Proteica em alfa-Hélice , Deficiências na Proteostase/prevenção & controle , alfa-Sinucleína/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...