Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(71): 10572-10587, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37555315

RESUMO

Recent advances in our comprehension of the electronic structure of metal ammonia complexes have opened avenues for novel materials with diffuse electrons. These complexes in their ground state can host peripheral "Rydberg" electrons which populate a hydrogenic-type shell model imitating atoms. Aggregates of such complexes form the so-called expanded or liquid metals. Expanded metals composed of d- and f-block metal ammonia complexes offer properties, such as magnetic moments and larger numbers of diffuse electrons, not present for alkali and alkaline earth (s-block) metals. In addition, tethering metal ammonia complexes via hydrocarbon chains (replacement of ammonia ligands with diamines) yields materials that can be used for redox catalysis and quantum computing, sensing, and optics. This perspective summarizes the recent findings for gas-phase isolated metal ammonia complexes and projects the obtained knowledge to the condensed phase regime. Possible applications for the newly introduced expanded metals and linked solvated electrons precursors are discussed and future directions are proposed.

2.
Molecules ; 28(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375268

RESUMO

Positively charged metal-ammonia complexes are known to host peripheral, diffuse electrons around their molecular skeleton. The resulting neutral species form materials known as expanded or liquid metals. Alkali, alkaline earth, and transition metals have been investigated previously in experimental and theoretical studies of both the gas and condensed phase. This work is the first ab initio exploration of an f-block metal-ammonia complex. The ground and excited states are calculated for Th0-3+ complexes with ammonia, crown ethers, and aza-crown ethers. For Th3+ complexes, the one valence electron Th populates the metal's 6d or 7f orbitals. For Th0-2+, the additional electrons prefer occupation of the outer s- and p-type orbitals of the complex, except Th(NH3)10, which uniquely places all four electrons in outer orbitals of the complex. Although thorium coordinates up to ten ammonia ligands, octa-coordinated complexes are more stable. Crown ether complexes have a similar electronic spectrum to ammonia complexes, but excitations of electrons in the outer orbitals of the complex are higher in energy. Aza-crown ethers disfavor the orbitals perpendicular to the crowns, attributed to the N-H bonds pointing along the plane of the crowns.

3.
Phys Chem Chem Phys ; 25(7): 5313-5326, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36723253

RESUMO

Transition metal oxides have been extensively used in the literature for the conversion of methane to methanol. Despite the progress made over the past decades, no method with satisfactory performance or economic viability has been detected. The main bottleneck is that the produced methanol oxidizes further due to its weaker C-H bond than that of methane. Every improvement in the efficiency of a catalyst to activate methane leads to reduction of the selectivity towards methanol. Is it therefore prudent to keep studying (both theoretically and experimentally) metal oxides as catalysts for the quantitative conversion of methane to methanol? This perspective focuses on molecular metal oxide complexes and suggests strategies to bypass the current bottlenecks with higher weight on the computational chemistry side. We first discuss the electronic structure of metal oxides, followed by assessing the role of the ligands in the reactivity of the catalysts. For better selectivity, we propose that metal oxide anionic complexes should be explored further, while hydrophylic cavities in the vicinity of the metal oxide can perturb the transition-state structure for methanol increasing appreciably the activation barrier for methanol. We also emphasize that computational studies should target the activation reaction of methanol (and not only methane), the study of complete catalytic cycles (including the recombination and oxidation steps), and the use of molecular oxygen as an oxidant. The titled chemical conversion is an excellent challenge for theory and we believe that computational studies should lead the field in the future. It is finally shown that bottom-up approaches offer a systematic way for exploration of the chemical space and should still be applied in parallel with the recently popular machine learning techniques. To answer the question of the title, we believe that metal oxides should still be considered provided that we change our focus and perform more systematic investigations on the activation of methanol.

4.
J Chem Phys ; 156(19): 194302, 2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597656

RESUMO

Beryllium ammonia complexes Be(NH3)4 are known to bear two diffuse electrons in the periphery of a Be(NH3)4 2+ skeleton. The replacement of one ammonia with a methyl group forms CH3Be(NH3)3 with one peripheral electron, which is shown to maintain the hydrogenic-type shell model observed for Li(NH3)4. Two CH3Be(NH3)3 monomers are together linked by aliphatic chains to form strongly bound beryllium ammonia complexes, (NH3)3Be(CH2)nBe(NH3)3, n = 1-6, with one electron around each beryllium ammonia center. In the case of a linear carbon chain, this system can be seen as the analog of two hydrogen atoms approaching each other at specific distances (determined by n). We show that the two electrons occupy diffuse s-type orbitals and can couple exactly as in H2 in either a triplet or singlet state. For long hydrocarbon chains, the singlet is an open-shell singlet nearly degenerate with the triplet spin state, which transforms to a closed-shell singlet for n = 1 imitating the σ-covalent bond of H2. The biradical character of the system is analyzed, and the singlet-triplet splitting is estimated as a function of n based on multi-reference calculations. Finally, we consider the case of bent hydrocarbon chains, which allows the closer proximity of the two diffuse electrons for larger chains and the formation of a direct covalent bond between the two diffuse electrons, which happens for two Li(NH3)4 complexes converting the open-shell to closed-shell singlets. The energy cost for bending the hydrocarbon chain is nearly compensated by the formation of the weak covalent bond rendering bent and linear structures nearly isoenergetic.

5.
Chem Commun (Camb) ; 58(9): 1310-1313, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34981795

RESUMO

Metal complexes with diffuse solvated electrons (solvated electron precursors) are proposed as alternative catalysts for the simultaneous CO2 capture and utilization. Quantum chemical calculations were used to study the reaction of CO2 with H2 and C2H4 to produce formic acid, methyldiol and δ-lactone. Mechanisms of a complete reaction pathway are found and activation barriers are reasonably low. The metal ligand complex readily reduces CO2 and significantly stabilizes CO2˙-. Ligand identity minimally influences the reaction. Additional reactions and future strategies are proposed with the goal of inducing experimental interest.

6.
J Chem Phys ; 155(1): 014303, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241410

RESUMO

High level quantum chemical approaches are used to study the geometric and electronic structures of M(NH3)n and M(NH3)n + (M = Cr, Mo for n = 1-6). These complexes possess a dual shell electronic structure of the inner metal (3d or 4d) orbitals and the outer diffuse orbitals surrounding the periphery of the complex. Electronic excitations reveal these two shells to be virtually independent of the other. Molybdenum and chromium ammonia complexes are found to differ significantly in geometry with the former adopting an octahedral geometry and the latter a Jahn-Teller distorted octahedral structure where only the axial distortion is stable. The hexa-coordinated complexes and the tetra-coordinated complexes with two ammonia molecules in the second solvation shell are found to be energetically competitive. Electronic excitation energies and computed IR spectra are provided to allow the two isomers to be experimentally distinguished. This work is a component of an ongoing effort to study the periodic trends of transition metal solvated electron precursors.

7.
Phys Chem Chem Phys ; 22(12): 6606-6618, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32159167

RESUMO

Zirconium monoxide, ZrO, was studied by multi-reference configuration interaction (MRCI) and coupled cluster methods using large basis sets in conjunction with effective core potentials. Complete potential energy curves were constructed and bonding patterns are proposed for several electronic states. Numerical results include accurate equilibrium bond lengths, harmonic vibrational frequencies, anharmonicities, excitation energies, dipole moments, and binding energies for both ground and excited states. The application of a ZrO unit as the catalytic center for methane activation is explored through the reaction ZrO + CH4→ Zr + CH3OH. Optimal density functional structures combined with single-point MRCI energy calculations are obtained for the complete reaction pathway. It is found that the lower energy singlet and triplet multiplicities (oxo states) favor the [2+2] mechanism and the higher energy quintets (oxyl states) favor the radical mechanism, which is overall more efficient in producing methanol. We finally suggest proper ligands that stabilize the oxyl states. These include halogens or other weak-field ligands, which finally convert the inert early transition metal oxide units to efficient methane-to-methanol catalysts.

8.
J Chromatogr A ; 1470: 84-96, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27726862

RESUMO

The belief that chromatographic separation of complex environmental mixtures or natural organic matter (NOM) produces featureless humps from which little, if anything, can be learned is still pervasive. Meanwhile improvements in chromatography and the use of information-rich detection methods have led to meaningful fractionation and revealed consistent data. Here, we build on this work and developed a robust, facile two-dimensional separation with high orthogonality between dimensions. We illustrate that re-injections of fractions (both in the first and in the second dimension) leads to individual peaks at the expected retention times and use information-rich detection to investigate the basis on which NOM is fractionated. We demonstrate unprecedentedly feature-rich chromatograms are observed even with standard UV detection for polar NOM fractions. The second stage of fractionation is demonstrated to separate isomers, providing a direct look at isomeric complexity in NOM as well as a tool to reduce it. Consistent with expectation, but confirmed for the first time through mass spectral data, radicals were detected for NOM components that were generally nonpolar and grouped in the condensed aromatic structure - like region of van Krevelen plots. High-resolution tandem mass spectral data, furthermore, suggests that many higher-MW components of fulvic acids (especially the highly oxidized ones) have formulas that do not match any known compounds in the literature, supporting the hypothesis that fulvic acids are a unique compound-class. Combined, the data illustrate that meaningful reduction in complexity reveals new compositional and structural detail and avails new avenues of investigation.


Assuntos
Benzopiranos/análise , Substâncias Húmicas/análise , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Peso Molecular , Espectrometria de Massas em Tandem
9.
Environ Sci Technol ; 49(24): 14239-48, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26554276

RESUMO

As levels of natural organic matter (NOM) in surface water rise, the minimization of potentially harmful disinfection by-products (DBPs) becomes increasingly critical. Here, we introduce the advantage that chromatographic prefractionation brings to investigating compositional changes to NOM caused by chlorination. Fractionation reduces complexity, making it easier to observe changes and attribute them to specific components. Under the conditions tested (0.1-0.4 g of Cl to g of C without further additives), the differences between highly and less oxidized NOM were striking. Highly oxidized NOM formed more diverse Cl-containing DPB, had a higher propensity to react with multiple Cl, and tended to transform so drastically as to no longer be amenable to electrospray-ionization mass spectral detection. Less-oxidized material tended to incorporate one Cl and retain its humiclike composition. N-containing, lipidlike, and condensed aromatic structure (CAS)-like NOM were selectively enriched in mass spectra, suggesting that such components do not react as extensively with NaOCl as their counterparts. Carbohydrate-like NOM, conversely, was selectively removed from spectra by chlorination.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Desinfecção/métodos , Espectrometria de Massas/métodos , Compostos Orgânicos/química , Carbono/química , Cloro/análise , Cromatografia , Halogenação , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio , Oxirredução , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...