Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Chem Rev ; 124(9): 5227-5420, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38661578

RESUMO

Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.

2.
ACS Appl Bio Mater ; 6(7): 2651-2666, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37352500

RESUMO

In this work, imidazole- or imidazolium-based benzothiadiazole ligands functionalized on graphene oxide combined with cholesterol oxidase constitute efficient, robust, and easy-to-handle materials with high biosensing activity for the detection of cholesterol by colorimetric methods. The presence of lanthanum(III) supported on graphene oxide as a possible coordinating site for the benzothiadiazole ligands was also evaluated, and its bioactivity was compared to that of the analogous material without the rare-earth metal. Our results demonstrated that graphene oxide functionalized with 4,7-bis-(imidazol-1-yl)-2,1,3-benzothiadiazole exhibited the best performance for the quantification of total cholesterol with a sensitivity of 0.0649 (with lanthanum) and 0.0618 au dL mg-1 (without lanthanum). In addition, these materials presented a better percentage of immobilization (>90%), recovered activity, resistance to storage, and detection range than materials containing 4,7-[1-carboxymethyl-(imidazol-3-ium)]-2,1,3-benzothiadiazole chloride. Therefore, the combination of GO-BTD (Im/Ac)/ChOx (with or without lanthanum) affords efficient biosensors for the colorimetric detection of cholesterol.


Assuntos
Técnicas Biossensoriais , Lantânio , Ligantes , Técnicas Biossensoriais/métodos , Colesterol
3.
Dalton Trans ; 51(26): 9971-9977, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35708623

RESUMO

We report a synthetic strategy that allows for the preparation of sterically encumbered heteroleptic Ru(II)porphyrinates with the desired configuration of stable/inert and weak/labile axial ligands to direct reactions between substrates to exclusively occur at the sterically encumbered face. To demonstrate the method, we describe the synthesis of a strapped-Ru(II)porphyrinate bearing a stable/inert triphenylphosphine (PPh3) bulky axial ligand coordinated exo to the central cavity and a weak/labile methanol molecule coordinated at the internal axial position. With this axial ligand configuration, the reported Ru(II)porphyrinate exclusively promotes carbene transfer reactions to olefins through the central cavity, which has been verified by the selective formation of cycloprane-linked [2]rotaxanes.


Assuntos
Alcenos , Ligantes , Modelos Moleculares
4.
Chem Commun (Camb) ; 57(60): 7398-7401, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34225355

RESUMO

We present a straightforward "click chemistry" methodology for the functionalization of water-oxidation catalyst iridium oxide nanoparticles (IrOx-NPs) with a multi-functionalized porphyrin-based photosynthetic model as sensitizer for the preparation of bioinspired photo-catalysts. This efficient method overcomes the usual aggregation issue found when decorating water oxidation nanocolloidal catalysts with hydrophobic sensitizers.

5.
J Am Chem Soc ; 143(33): 12948-12954, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34291930

RESUMO

The promising field of nanomedicine stimulates a continuous search for multifunctional nanotheranostic systems for imaging and drug delivery. Herein, we demonstrate that application of supramolecular chemistry's concepts in dendritic assemblies can enable the formation of advanced dendrimer-based nanotheranostic devices. A dendrimer bearing 81 triazolylferrocenyl terminal groups adopts a more compact shell-like structure in polar solvents with the ferrocenyl peripheral groups backfolding toward the hydrophobic dendrimer interior, while exposing the more polar triazole moieties as the dendritic shell. Akin to lipids, the compact dendritic structure self-assembles into uniform nanovesicles that in turn self-assemble into larger vesosomes in water. The vesosomes emit green nontraditional intrinsic fluorescence (NTIL), which is an emerging property as there are no classical fluorophores in the dendritic macromolecular structure. This work confirms the hypothesis that the NTIL emission is greatly enhanced by rigidification of the supramolecular assemblies containing heteroatomic subluminophores (HASLs) and by the presence of electron rich functional groups on the periphery of dendrimers. This work is the first one detecting NTIL in ferrocenyl-terminated dendrimers. Moreover, the vesosomes are stable in biological medium, are uptaken by cells, and show cytotoxic activity against cancer cells. Accordingly, the self-organization of these dendrimers into tertiary structures promotes the emergence of new properties enabling the same component, in this case, ferrocenyl group, to function as both antitumoral drug and fluorophore.

6.
Nat Commun ; 11(1): 6370, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311502

RESUMO

Selectivity in N-H and S-H carbene insertion reactions promoted by Ru(II)porphyrinates currently requires slow addition of the diazo precursor and large excess of the primary amine and thiol substrates in the reaction medium. Such conditions are necessary to avoid the undesirable carbene coupling and/or multiple carbene insertions. Here, the authors demonstrate that the synergy between the steric shielding provided by a Ru(II)porphyrinate-based macrocycle with a relatively small central cavity and the kinetic stabilization of otherwise labile coordinative bonds, warranted by formation of the mechanical bond, enables single carbene insertions to occur with quantitative efficiency and perfect selectivity even in the presence of a large excess of the diazo precursor and stoichiometric amounts of the primary amine and thiol substrates. As the Ru(II)porphyrinate-based macrocycle bears a confining nanospace and alters the product distribution of the carbene insertion reactions when compared to that of its acyclic version, the former therefore functions as a nanoreactor.

7.
Chemistry ; 26(35): 7808-7822, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32022364

RESUMO

A 5,15-bis(1,1'-biphenyl)porphyrin-based molecular clip covalently connected to a ditopic aliphatic ester loop moiety yields a semi-rigid macrocycle with a well-defined cavity. The resulting macrocycle fits the structural requirements for the preparation of porphyrinates capable of promoting formation of C-C bonds. To demonstrate the usefulness of porphyrin-based macrocycles, an active-metal-template synthesis of rotaxanes through a redox non-innocent carbene transfer reaction is described. Coordination of CoII ions into the porphyrin subunit followed by addition of appropriate monodentate nitrogen-based additives to function as axial ligands enables the radical carbene transfer reactions to styrene derivatives to occur exclusively through the cavity of the macrocycle to afford cyclopropane-linked rotaxanes in excellent 95 % yield. Investigation of the product distribution afforded from the rotaxane assembly reaction reveals how the redox cooperative action between the carbene species and the CoII ions can be manipulated to gain control over the radical-type mechanism to favor the productive rotaxane forming process.

8.
Chem Soc Rev ; 49(1): 8-20, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31808480

RESUMO

In natural photosynthesis, the protein backbone directs and positions primary and secondary electron donor and acceptor moieties in the reaction center to control the yield and kinetics of the sequential electron transfer reactions that transform light energy into chemical potential. Organization of the active cofactors is mainly driven by noncovalent interactions between the protein scaffold and the chromophores. Based on the natural system blueprint, several research efforts have investigated π-π stacking, ionic interactions as well as formation of hydrogen and coordinative bonds as noncovalent organizing principles for the assembly of electron donors and acceptors in artificial reaction centers. Introduction of supramolecular concepts into the organization of electron donor-acceptor in artificial photosynthetic models raises the possibility of applying template-directed synthesis techniques to assemble interlocked systems in which the photo-redox components are mechanically rather than covalently linked. Rotaxanes and catenanes are the leading examples of interlocked molecules, whose recent developments in synthetic chemistry have allowed their efficient preparation. Introduction of mechanical bonds into electron donor-acceptor systems allows the study of the interlocked components' submolecular motions and conformational changes, which are triggered by external stimuli, on the thermodynamic and kinetic parameters of photoinduced processes in artificial reaction centers. This Tutorial discusses our efforts in the synthesis and photophysical investigation of rotaxanes and catenanes decorated with peripheral electron donors and [60]fullerene as the acceptor. The assembly of our rotaxanes and catenanes is based on the classic 1,10-phenanthroline-copper(i) metal template strategy in conjunction with the virtues of the Cu(i)-catalyzed-1,3-dipolar cycloaddition of azides and alkynes (the CuAAC or "click" reaction) as the protocol for the final macrocyclization or stoppering reactions of the entwined precursors. Time-resolved emission and transient absorption experiments revealed that upon excitation, our multichromophoric rotaxanes and catenanes undergo a cascade of sequential energy and electron transfer reactions that ultimately yield charge separated states with lifetimes as long as 61 microseconds, thereby mimicking the functions of the natural systems. The importance of the Cu(i) ion (used to assemble the interlocked molecules) as an electronic relay in the photoinduced processes is also highlighted. The results of this research demonstrate the importance of the distinct molecular conformations adopted by rotaxanes and catenanes in the electron transfer dynamics and illustrate the versatility of interlocked molecules as scaffolds for the organization of donor-acceptor moieties in the design of artificial photosynthetic reaction centers.

9.
Beilstein J Org Chem ; 15: 2644-2654, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807199

RESUMO

This work describes a novel fluorescent 2,1,3-benzothiadiazole derivative designed to act as a water-soluble and selective bioprobe for plasma membrane imaging. The new compound was efficiently synthesized in a two-step procedure with good yields. The photophysical properties were evaluated and the dye proved to have an excellent photostability in several solvents. DFT calculations were found in agreement with the experimental data and helped to understand the stabilizing intramolecular charge-transfer process from the first excited state. The new fluorescent derivative could be applied as selective bioprobe in several cell lines and displayed plasma-membrane affinity during the imaging experiments for all tested models.

10.
Methods Mol Biol ; 1770: 319-334, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29978411

RESUMO

The unusually high tolerance toward chemical functional groups of the copper(I)-catalyzed Huisgen-Sharpless-Meldal 1,3-dipolar cycloaddition of azides and alkynes protocol (the CuAAC or "click" reaction) associated with its mild conditions and high yields has been explored in the present methodology to successfully prepare water oxidation catalyst iridium oxide nanoparticles decorated with organic dyes. The "click reaction" has proven to be an excellent synthetic tool to overcome the incompatible solubility of the hydrophilic iridium oxide nanoparticles and the hydrophobic dyes. A complex artificial photosynthetic model designed to mimic the photoinduced redox processes occurring in photosystem II is used as a hydrophobic dye to highlight the efficiency and selectiveness of the method.


Assuntos
Química Click , Irídio , Nanopartículas , Oxirredução , Fotossíntese , Água/química , Catálise , Corantes/química , Interações Hidrofóbicas e Hidrofílicas , Irídio/química , Estrutura Molecular , Nanopartículas/química , Nanopartículas/ultraestrutura , Oxigênio/metabolismo , Análise Espectral
11.
Angew Chem Int Ed Engl ; 57(29): 8979-8983, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29847693

RESUMO

A CoII /porphyrinate-based macrocycle in the presence of a 3,5-diphenylpyridine axial ligand functions as an endotopic ligand to direct the assembly of [2]rotaxanes from diazo and styrene half-threads, by radical-carbene-transfer reactions, in excellent 95 % yield. The method reported herein applies the active-metal-template strategy to include radical-type activation of ligands by the metal-template ion during the organometallic process which ultimately yields the mechanical bond. A careful quantitative analysis of the product distribution afforded from the rotaxane self-assembly reaction shows that the CoII /porphyrinate subunit is still active after formation of the mechanical bond and, upon coordination of an additional diazo half-thread derivative, promotes a novel intercomponent C-H insertion reaction to yield a new rotaxane-like species. This unexpected intercomponent C-H insertion illustrates the distinct reactivity brought to the CoII /porphyrinate catalyst by the mechanical bond.

12.
Inorg Chem ; 55(2): 865-70, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26741646

RESUMO

Interacting superparamagnetic iron(II) oxide nanoparticles (NPs) with sizes of 5.3 ± 1.6 nm were prepared by simple decomposition of [Fe(COT)2] (COT = 1,3,5,7-cyclooctatetraene) with 5 bar of H2 in 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI·NTf2) ionic liquid (IL). The static and dynamic magnetic characterization revealed a superparamagnetic behavior with weak dipolar interactions of these NPs. In situ structural studies by X-ray absorption spectroscopy demonstrated that they consist of nanostructured FeO. This approach is an appropriate method to prepare and stabilize nanostructured FeO particles, where the presence of an IL proved to be fundamental to suppress the aggregation and usual overoxidation of the FeO NPs.

13.
Curr Top Med Chem ; 15(13): 1236-56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25858133

RESUMO

The concept of Nanomedicine emerged along with the new millennium, and it is expected to provide solutions to some of modern medicine's unsolved problems. Nanomedicine offers new hopes in several critical areas such as cancer treatment, viral and bacterial infections, medical imaging, tissue regeneration, and theranostics. To explore all these applications, a wide variety of nanomaterials have been developed which include liposomes, dendrimers, nanohydrogels and polymeric, metallic and inorganic nanoparticles. Recently, interlocked systems, namely rotaxanes and catenanes, have been incorporated into some of these chemical platforms in an attempt to improve their performance. This review focus on the nanomedicine applications of nanomaterials containing interlocked structures. The introduction gives an overview on the significance of interdisciplinary science in the progress of the nanomedicine field, and it explains the evolution of interlocked molecules until their application in nanomedicine. The following sections are organized by the type of interlocked structure, and it comprises details of the in vitro and/or in vivo experiments involving each material: rotaxanes as imaging agents, rotaxanes as cytotoxic agents, rotaxanes as peptide transporters, mechanized silica nanoparticles as stimuli responsive drug delivery systems, and polyrotaxanes as drug and gene delivery systems.


Assuntos
Catenanos/química , Diagnóstico por Imagem/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Rotaxanos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Catenanos/metabolismo , Dendrímeros/síntese química , Dendrímeros/uso terapêutico , Técnicas de Transferência de Genes , Humanos , Hidrogéis/química , Hidrogéis/uso terapêutico , Lipossomos/química , Lipossomos/uso terapêutico , Camundongos , Nanomedicina/instrumentação , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/patologia , Neoplasias/terapia , Regeneração , Rotaxanos/metabolismo , Nanomedicina Teranóstica/métodos
14.
Am J Transplant ; 14(4): 966-71, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24712333

RESUMO

Lung transplantation through controlled donation after circulatory death (cDCD) has slowly gained universal acceptance with reports of equivalent outcomes to those through donation after brain death. In contrast, uncontrolled DCD (uDCD) lung use is controversial and requires ethical, legal and medical complexities to be addressed in a limited time. Consequently, uDCD lung use has not previously been reported in the United States. Despite these potential barriers, we present a case of a patient with multiple gunshot wounds to the head and the body who was unsuccessfully resuscitated and ultimately became an uDCD donor. A cytomegalovirus positive recipient who had previously consented for CDC high-risk, DCD and participation in the NOVEL trial was transplanted from this uDCD donor, following 3 h of ex vivo lung perfusion. The postoperative course was uneventful, and the recipient was discharged home on day 9. While this case represents a "best-case scenario," it illustrates a method for potential expansion of the lung allograft pool through uDCD after unsuccessful resuscitation in hospitalized patients.


Assuntos
Morte , Seleção do Doador , Transplante de Pulmão , Doadores de Tecidos , Obtenção de Tecidos e Órgãos/métodos , Adulto , Sobrevivência de Enxerto , Humanos , Masculino , Prognóstico , Obtenção de Tecidos e Órgãos/ética , Obtenção de Tecidos e Órgãos/legislação & jurisprudência
15.
Dalton Trans ; 42(40): 14473-9, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-23970370

RESUMO

This work describes a simple one-step synthesis of Mn3O4 nanoparticles by thermal decomposition of [Mn(acac)2] (acac = acetylacetonate) using imidazolium ionic liquids (ILs) and a conventional solvent, oleylamine, for comparison. The Mn3O4 nanoparticles were characterized by XRD, ATR-FTIR, TEM, Raman, UV/VIS and magnetometry techniques. The addition of 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide IL (BMI·NTf2) yielded a smaller particle size (9.9 ± 1.8 nm) with better dispersion and more regular sizes than synthesis using oleylamine as the solvent (12.1 ± 3.0 nm). The complete conversion of the precursor to Mn3O4 nanoparticles occurred after 96 h at 180 °C for the reaction performed in BMI·NTf2. However, under these reaction conditions in oleylamine, no precursor was detected, but two different phases were observed: a major phase corresponding to Mn3O4 and a minor phase corresponding to MnO2. Magnetometry revealed that Mn3O4 nanoparticles synthesized in either oleylamine or BMI·NTf2 exhibited ferrimagnetic behavior at low temperatures, whereas they were paramagnetic at room temperature. As expected, the blocking temperature and the coercivity decreased with the size of nanoparticles. Our results demonstrate that reaction conditions such as time, and the nature of the ionic liquid play important roles in determining the size of Mn3O4 nanoparticles.

16.
Environ Entomol ; 42(4): 658-67, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23905728

RESUMO

Fungal entomopathogens are widely distributed across natural and managed systems, with numerous host species and likely a wide range of community impacts. While the potential for fungal pathogens to provide biological control has been explored in some detail, less is known about their community interactions. Here we investigate the effects of fungal epizootics of the entomopathogen Lecanicillium lecanii (Zimmerman) on a keystone mutualism between Azteca instabilis (F. Smith), a dominant arboreal ant, and the green coffee scale (Coccus viridis Green), as well as broader impacts on a coffee agroecosystem ant community. We hypothesized that seasonal epizootics cause shifts in the foraging ranges of A. instabilis as the ants adapt to the loss of the resource. We further hypothesized that the magnitude of these shifts depends on the availability of alternate resources located in neighboring shade trees. To test these hypotheses, we induced an epizootic in experimental sites, which were compared with control sites. Surveys of ant activity were undertaken pre- and post-epizootic. We found a decrease in foraging activity of A. instabilis and increase in activity of other ant species in the experimental sites post-epizootic. The decrease in abundance of A. instabilis foragers was greater on plants in which an epizootic was induced than in other plants. This relationship was modified by shade tree density where higher shade tree density was associated with larger decreases in A. intabilis foraging activity in coffee plants. These results demonstrate the potential for fungal entomopathogens to influence the structure and diversity of ecological communities.


Assuntos
Formigas/fisiologia , Biota , Hemípteros/microbiologia , Hypocreales/fisiologia , Simbiose , Animais , Café/crescimento & desenvolvimento , Ecossistema , Comportamento Alimentar , México , Densidade Demográfica
17.
Nanoscale ; 2(12): 2601-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20936213

RESUMO

The organometallic complexes ([Ru(COD)(2-methylallyl)2] and [Ni(COD)2] (COD=1,5-cyclooctadiene) dissolved in imidazolium ionic liquids (ILs) undergo reduction and decomposition, respectively, to afford stable ruthenium and nickel metal(0) nanoparticles (Ru(0)-NPs and Ni(0)-NPs) in the absence of classical reducing agents. Depending on the case, the reduction/auto-decomposition is promoted by either the cation and/or anion of the neat imidazolium ILs.


Assuntos
Complexos de Coordenação/química , Imidazóis/química , Líquidos Iônicos/química , Nanopartículas Metálicas/química , Compostos Organometálicos/química , Complexos de Coordenação/síntese química , Nanopartículas Metálicas/ultraestrutura , Níquel/química , Oxirredução , Substâncias Redutoras/química , Rutênio/química
18.
Molecules ; 15(5): 3441-61, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20657493

RESUMO

A brief summary of selected pioneering and mechanistic contributions in the field of carbon-carbon cross-coupling reactions with palladium nanoparticles (Pd-NPs) in ionic liquids (ILs) is presented. Five exemplary model systems using the Pd-NPs/ILs approach are presented: Heck, Suzuki, Stille, Sonogashira and Ullmann reactions which all have in common the use of ionic liquids as reaction media and the use of palladium nanoparticles as reservoir for the catalytically active palladium species.


Assuntos
Líquidos Iônicos/química , Paládio/química , Carbono/química , Catálise , Nanopartículas Metálicas , Fenômenos de Química Orgânica
19.
Biotechnol Bioeng ; 107(4): 612-21, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20589841

RESUMO

In the present study, the main focus was the characterization and application of the by-product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic-type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p-hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin-formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m(-1) for a 40 wt% sisal fiber-reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber-reinforced biobased composites displaying high mechanical properties.


Assuntos
Celulose/metabolismo , Resinas Compostas/síntese química , Lignina/isolamento & purificação , Saccharum/metabolismo , Agave/química , Celulose/química , Resinas Compostas/química , Lignina/química , Saccharum/química
20.
Chem Soc Rev ; 39(5): 1780-804, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20419219

RESUMO

Ionic liquids (ILs), in particular imidazolium-based ILs, have proven to be suitable media for the generation and stabilisation of soluble metal nanoparticles (NPs). Indeed, transition-metal NPs with small sizes, narrow size distribution and different shapes have been prepared by reduction of organometallic compounds with molecular hydrogen, decomposition of transition-metal complexes in the zero-valent state, metal bombardment or simple transfer for previously prepared water- or classical organic solvent-soluble colloids to the ILs. The formation and stabilisation of NPs in these highly hydrogen bonded organised supramolecular fluids occur with the re-organisation of the hydrogen bond network and the generation of nanostructures with polar and non-polar regions, including the NPs. The IL forms a protective layer, which is probably composed of imidazolium aggregates located immediately adjacent to the nanoparticle surface, which provides both steric and electronic protection against aggregation and/or agglomeration. These stable transition-metal NPs immobilised in the ILs have proven to be efficient green catalysts for several reactions in multiphase conditions and also novel materials for chemical sensors. In this critical review, the structural/surface properties of these soluble metal NPs dispersed in ILs and their application in catalysis and as chemical sensors are discussed, with particular attention paid to the stabilisation models proposed to explain the stability and properties of these metal NPs (219 references).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA