Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 16(39): 21391-406, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25183315

RESUMO

This paper reports a novel liquid crystal phase having the characteristics of a twist-bend nematic phase formed by a non-symmetric ether-linked liquid crystal dimer. The dimer 1''-(2',4-difluorobiphenyl-4'-yloxy)-9''-(4-cyanobiphenyl-4'-yloxy) nonane (FFO9OCB) exhibits two liquid-crystalline phases on cooling at a sufficiently high rate from the isotropic phase. The high temperature mesophase has been reported in the literature as nematic and confirmed in this study. The other mesophase is metastable and can be supercooled giving rise to a glassy state. Its identification and characterization are based on optical textures, broadband dielectric spectroscopy, calorimetry, measurements of both splay and bend elastic constants in the nematic phase and miscibility studies. It is concluded that the low temperature mesophase exhibits the characteristics of a twist-bend nematic phase. Dielectric measurements enable us to obtain the static permittivity and information about the molecular dynamics in the isotropic phase, in the nematic mesophase and across the isotropic-to-nematic phase transition. Two orientations, parallel and perpendicular to the director, have been investigated. In the high temperature nematic mesophase, the dielectric anisotropy is found to be positive. Measurements of the parallel component of the dielectric permittivity are well-explained by the molecular theory of dielectric relaxation in nematic dimers (M. Stocchero, A. Ferrarini, G. J. Moro, D. A. Dunmur and G. R. Luckhurst, J. Chem. Phys., 2004, 121, 8079). The dimer is modelled as a mixture of cis and trans conformers and the model allows an estimate of their relative populations at each temperature. The nematic-to-isotropic phase transition has been exhaustively studied from the accurate evolution of the heat capacity and the static dielectric permittivity data. It has been concluded that the transition is first order in nature, but close to tricritical. The nature of the nematic-to-the novel liquid crystal phase transition is difficult to analyze to the same extent because of insufficient precision. Only observations at cooling rates of 10 K min(-1) or higher were possible because on heating from the glassy state, the twist-bend nematic mesophase crystallizes at temperatures far below the nematic-nematic phase transition.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(3 Pt 1): 031704, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22060387

RESUMO

The liquid-crystal dimer 1'',7''-bis(4-cyanobiphenyl-4'-yl)heptane (CB7CB) exhibits two liquid-crystalline mesophases on cooling from the isotropic phase. The high-temperature phase is nematic; the identification and characterization of the other liquid-crystal phase is reported in this paper. It is concluded that the low-temperature mesophase of CB7CB is a new type of uniaxial nematic phase having a nonuniform director distribution composed of twist-bend deformations. The techniques of small-angle x-ray scattering, modulated differential scanning calorimetry, and dielectric spectroscopy have been applied to establish the nature of the nematic-nematic phase transition and the structural features of the twist-bend nematic phase. In addition, magnetic resonance studies (electron-spin resonance and (2)H nuclear magnetic resonance) have been used to investigate the orientational order and director distribution in the liquid-crystalline phases of CB7CB. The synthesis of a specifically deuterated sample of CB7CB is reported, and measurements showed a bifurcation of the quadrupolar splitting on entering the low-temperature mesophase from the high-temperature nematic phase. This splitting could be interpreted in terms of the chirality of the twist-bend structure of the director. Calculations using an atomistic model and the surface interaction potential with Monte Carlo sampling have been carried out to determine the conformational distribution and predict dielectric and elastic properties in the nematic phase. The former are in agreement with experimental measurements, while the latter are consistent with the formation of a twist-bend nematic phase.


Assuntos
Cristais Líquidos/química , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...