Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 10(1): 11, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272924

RESUMO

Due to the prohibitive cost of transporting raw materials into Space, in-situ materials along with cement-like binders are poised to be employed for extraterrestrial construction. A unique methodology for obtaining microstructural topology of cement samples hydrated in microgravity environment at the International Space Station (ISS) is presented here. Distinctive Scanning Electron Microscopy (SEM) micrographs of hardened tri-calcium silicate (C3S) samples were used as exemplars in a deep learning-based microstructure reconstruction framework. The proposed method aids in generation of an ensemble of microstructures that is inherently statistical in nature, by utilizing sparse experimental data such as the C3S samples hydrated in microgravity. The hydrated space-returned samples had exhibited higher porosity content (~70 %) with the portlandite phase assuming an elongated plate-like morphology. Qualitative assessment of the volumetric slices from the reconstructed volumes showcased similar visual characteristics to that of the target 2D exemplar. Detailed assessment of the reconstructed volumes was carried out using statistical descriptors, and was further compared against micro-CT virtual data. The reconstructed volumes captured the unique microstructural morphology of the hardened C3S samples of both space-returned and ground-based samples, and can be directly employed as Representative Volume Element (RVE) to characterize mechanical/transport properties.

2.
Polymers (Basel) ; 12(6)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486156

RESUMO

Here we introduce the synthesis and thermal properties of a series of sophisticated imidazolium ionenes with alternating amide-amide or amide-imide backbone functionality, and investigate the structural effects of mono(imidazolium) and unprecedented tris(imidazolium) ionic liquids (ILs) in these ionenes. The new set of poly(amide-amide) (PAA) and poly(amide-imide) (PAI) ionenes represent the intersection of conventional high-performance polymers with the ionene archetype-presenting polymers with alternating functional and ionic elements precisely sequenced along the backbone. The effects of polymer composition on the thermal properties and morphology were analyzed. Five distinct polymer backbones were synthesized and combined with a stoichiometric equivalent of the IL 1-benzyl-3-methylimidazolium bistriflimide ([Bnmim][Tf2N]), which were studied to probe the self-assembly, structuring, and contributions of intermolecular forces when IL is added. Furthermore, three polyamide (PA) or polyimide (PI) ionenes with simpler xylyl linkages were interfaced with [Bnmim][Tf2N] as well as a novel amide-linked tris(imidazolium) IL, to demonstrate the structural changes imparted by the inclusion of functional, ionic additives dispersed within the ionene matrix. This work highlights the possibilities for utilizing concepts from small molecules which exhibit supramolecular self-assembly to guide creative design and manipulate the structuring of ionenes.

3.
Membranes (Basel) ; 10(3)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235739

RESUMO

Here, we report the synthesis and thermophysical properties of seven primarily aromatic, imidazolium-based polyamide ionenes. The effects of varied para-, meta-, and ortho-connectivity, and spacing of ionic and amide functional groups, on structural and thermophysical properties were analyzed. Suitable, robust derivatives were cast into thin films, neat, or with stoichiometric equivalents of the ionic liquid (IL) 1-benzy-3-methylimidazolium bistriflimide ([Bnmim][Tf2N]), and the gas transport properties of these membranes were measured. Pure gas permeabilities and permselectivities for N2, CH4, and CO2 are reported. Consistent para-connectivity in the backbone was shown to yield the highest CO2 permeability and suitability for casting as a very thin, flexible film. Derivatives containing terephthalamide segments exhibited the highest CO2/CH4 and CO2/N2 selectivities, yet CO2 permeability decreased with further deviation from consistent para-linkages.

4.
ACS Omega ; 4(2): 3439-3448, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459559

RESUMO

It is highly desirable to integrate the CO2 solubility benefits of ionic liquids (ILs) in polymeric membrane systems for effective CO2 separations. Herein, we are exclusively exploring a series of four novel imidazolium-mediated Tröger's base (TB)-containing ionene polymers for enhanced CO2 separation. The two diimidazole-functionalized Tröger's base monomers synthesized from "ortho"- and "para"-substituted imidazole anilines were polymerized with equimolar amounts of two different aromatic and aliphatic comonomers (α,α'-dichloro-p-xylene and 1,10-dibromodecane, respectively) via Menshutkin reactions to obtain four respective ionene polymers ([Im-TB(o&p)-Xy][Cl] and ([Im-TB(o&p)-C10][Br], respectively). The resulting ionene polymers having halide anions were exchanged with [Tf2N]- anions, yielding a novel Tröger's base material [Im-TB(x)-R][Tf2N] or "Im-TB-Ionenes". The structural and physical properties as well as the gas separation behaviors of the copolymers of aromatic and aliphatic Im-TB-Ionenes have been extensively investigated with respect to the regiochemistry of imidazolium groups at the ortho and para positions of the TB unit. The imidazolium-mediated TB-Ionenes showed high CO2 solubility and hence an excellent CO2/CH4 permselectivity of 82.5. The Im-TB-Ionenes also displayed good thermal and mechanical stabilities.

5.
Membranes (Basel) ; 9(7)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277233

RESUMO

Three new isomeric 6FDA-based polyimide-ionenes, with imidazolium moieties and varying regiochemistry (para-, meta-, and ortho- connectivity), and composites with three different ionic liquids (ILs) have been developed as gas separation membranes. The structural-property relationships and gas separation behaviors of the newly developed 6FDA polyimide-ionene + IL composites have been extensively studied. All the 6FDA-based polyimide-ionenes exhibited good compatibility with the ILs and produced homogeneous hybrid membranes with the high thermal stability of ~380 °C. Particularly, [6FDA I4A pXy][Tf2N] ionene + IL hybrids having [C4mim][Tf2N] and [Bnmim][Tf2N] ILs offered mechanically stable matrixes with high CO2 affinity. The permeability of CO2 was increased by factors of 2 and 3 for C4mim and Bnmim hybrids (2.15 to 6.32 barrers), respectively, compared to the neat [6FDA I4A pXy][Tf2N] without sacrificing their permselectivity for CO2/CH4 and CO2/N2 gas pairs.

6.
J Am Chem Soc ; 140(46): 15626-15630, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30407804

RESUMO

The anionic ring-opening copolymerization of N-( p-tolylsulfonyl)azetidine ( pTsAzet) and N-( o-tolylsulfonyl)azetidine ( oTsAzet) produces poly( pTsAzet- co- oTsAzet) as a statistical copolymer. The pTsAzet/ oTsAzet copolymerization is living and allows for the synthesis of poly(sulfonylazetidine) of target molecular weights with narrow dispersities. 1H NMR spectroscopy was used to monitor the kinetics of the polymerization and estimate the monomer reactivity ratios. It was found that the reactivity ratios for oTsAzet and pTsAzet at 180 °C are 1.66 and 0.60, respectively. The tosyl groups of p( pTsAzet- co- oTsAzet) were reductively removed to produce linear poly(trimethylenimine) (LPTMI). This represents the first route to LPTMI of controlled molecular weight and low dispersity. Finally, the slow kinetics of the sulfonylazetidine polymerization facilitated the synthesis of a block copolymer without requiring the sequential addition of monomer. Specifically, pTsAzet, oTsAzet, and ( N- p-toluenesulfonyl-2-methylaziridine) ( pTsMAz) were combined in solution. pTsMAz selectively polymerizes to form the first block at moderate temperature. After consumption of pTsMAz, the temperature was increased to copolymerize pTsAzet and oTsAzet and produce the block copolymer p( pTsMAz)- b-p( pTsAzet- co- oTsAzet).

7.
MRS Adv ; 3(52): 3091-3102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30298102

RESUMO

A new family of six ionenes containing aromatic amide linkages has been synthesized from ready available starting materials at scales up to ~50 g. These ionene-polyamides are all constitutional isomers and vary only in the regiochemistry of the amide linkages (para, meta) and xylyl linkages (ortho, meta, para) which are present in the polymer backbone. This paper details the synthesis of these ionenes and associated characterizations. Ionene-polyamides exhibit relatively low melting points (~150 oC) allowing them to be readily processed into films and other objects. These ionene-polyamide materials are being developed for further study as polymer membranes for the separations of gases such as CO2, N2, CH4 and H2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...