Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 35(1): 102117, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38304729

RESUMO

Identifying therapeutic oligonucleotides that are cross-reactive to experimental animal species can dramatically accelerate the process of preclinical development and clinical translation. Here, we identify fully chemically-modified small interfering RNAs (siRNAs) that are cross-reactive to Janus kinase 1 (JAK1) in humans and a large variety of other species. We validated the identified siRNAs in silencing JAK1 in cell lines and skin tissues of multiple species. JAK1 is one of the four members of the JAK family of tyrosine kinases that mediate the signaling transduction of many inflammatory cytokine pathways. Dysregulation of these pathways is often involved in the pathogenesis of various immune disorders, and modulation of JAK family enzymes is an effective strategy in the clinic. Thus, this work may open up unprecedented opportunities for evaluating the modulation of JAK1 in many animal models of human inflammatory skin diseases. Further chemical engineering of the optimized JAK1 siRNAs may expand the utility of these compounds for treating immune disorders in additional tissues.

2.
bioRxiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37461560

RESUMO

Nonalcoholic steatohepatitis (NASH) is a malady of multiple cell types associated with hepatocyte triglyceride (TG) accumulation, macrophage inflammation, and stellate cell-induced fibrosis, with no approved therapeutics yet available. Here, we report that stellate cell fatty acid synthase (FASN) in de novo lipogenesis drives the autophagic flux that is required for stellate cell activation and fibrotic collagen production. Further, we employ a dual targeting approach to NASH that selectively depletes collagen through selective stellate cell knockout of FASN (using AAV9-LRAT Cre in FASNfl/fl mice), while lowering hepatocyte triglyceride by depleting DGAT2 with a GalNac-conjugated, fully chemically modified siRNA. DGAT2 silencing in hepatocytes alone or in combination with stellate cell FASNKO reduced liver TG accumulation in a choline-deficient NASH mouse model, while FASNKO in hepatocytes alone (using AAV8-TBG Cre in FASNfl/fl mice) did not. Neither hepatocyte DGAT2 silencing alone nor FASNKO in stellate cells alone decreased fibrosis (total collagen), while loss of both DGAT2 plus FASN caused a highly significant attenuation of NASH. These data establish proof of concept that dual targeting of DGAT2 plus FASN alleviates NASH progression in mice far greater than targeting either gene product alone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...