Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Elife ; 122023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38113081

RESUMO

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ('Myomatrix arrays') that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a 'motor unit,' during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and identifying pathologies of the motor system.


Assuntos
Neurônios Motores , Primatas , Ratos , Camundongos , Animais , Neurônios Motores/fisiologia , Eletrodos , Fibras Musculares Esqueléticas
2.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36865176

RESUMO

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ("Myomatrix arrays") that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a "motor unit", during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and in identifying pathologies of the motor system.

3.
Elife ; 112022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107757

RESUMO

Songbirds and humans share the ability to adaptively modify their vocalizations based on sensory feedback. Prior studies have focused primarily on the role that auditory feedback plays in shaping vocal output throughout life. In contrast, it is unclear how non-auditory information drives vocal plasticity. Here, we first used a reinforcement learning paradigm to establish that somatosensory feedback (cutaneous electrical stimulation) can drive vocal learning in adult songbirds. We then assessed the role of a songbird basal ganglia thalamocortical pathway critical to auditory vocal learning in this novel form of vocal plasticity. We found that both this circuit and its dopaminergic inputs are necessary for non-auditory vocal learning, demonstrating that this pathway is critical for guiding adaptive vocal changes based on both auditory and somatosensory signals. The ability of this circuit to use both auditory and somatosensory information to guide vocal learning may reflect a general principle for the neural systems that support vocal plasticity across species.


Assuntos
Tentilhões , Aves Canoras , Animais , Gânglios da Base/fisiologia , Retroalimentação Sensorial/fisiologia , Tentilhões/fisiologia , Humanos , Aprendizagem/fisiologia , Aves Canoras/fisiologia , Vocalização Animal/fisiologia
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 5111-5114, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086620

RESUMO

High signal-to-noise ratio (SNR) electromyography (EMG) recordings are essential for identifying and analyzing single motor unit activity. While high-density electrodes allow for greater spatial resolution, the smaller electrode area translates to a higher impedance and lower SNR. In this study, we developed an implantable and flexible 3D microelectrode array (MEA) with low impedance that enables high-quality EMG recording. With polyimide micro-cones realized by standard photolithography process and PEDOT:PSS coating, this design can increase effective surface area by up to 250% and significantly improve electrical performance for electrode sites with various geometric surface areas, where the electrode impedance is at most improved by 99.3%. Acute EMG activity from mice was recorded by implanting the electrodes in vivo, and we were able to detect multiple individual motor units simultaneously and with high resolution ([Formula: see text]). The charge storage capacity was measured to be 34.2 mC/cm2, indicating suitability of the electrodes for stimulation applications as well.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Animais , Impedância Elétrica , Camundongos , Microeletrodos
5.
eNeuro ; 8(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33139322

RESUMO

ADAP1/Centaurin-α1 (CentA1) functions as an Arf6 GTPase-activating protein highly enriched in the brain. Previous studies demonstrated the involvement of CentA1 in brain function as a regulator of dendritic differentiation and a potential mediator of Alzheimer's disease (AD) pathogenesis. To better understand the neurobiological functions of CentA1 signaling in the brain, we developed Centa1 knock-out (KO) mice. The KO animals showed neither brain development nor synaptic ultrastructure deficits in the hippocampus. However, they exhibited significantly higher density and enhanced structural plasticity of dendritic spines in the CA1 region of the hippocampus compared with non-transgenic (NTG) littermates. Moreover, the deletion of Centa1 improved performance in the object-in-place (OIP) spatial memory task. These results suggest that CentA1 functions as a negative regulator of spine density and plasticity, and of hippocampus-dependent memory formation. Thus, CentA1 and its downstream signaling may serve as a potential therapeutic target to prevent memory decline associated with aging and brain disorders.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Espinhas Dendríticas , Hipocampo , Memória , Proteínas do Tecido Nervoso/genética , Doença de Alzheimer , Animais , Espinhas Dendríticas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Hipocampo/metabolismo , Camundongos
6.
eNeuro ; 6(3)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31126913

RESUMO

Dopamine is hypothesized to convey error information in reinforcement learning tasks with explicit appetitive or aversive cues. However, during motor skill learning feedback signals arise from an animal's evaluation of sensory feedback resulting from its own behavior, rather than any external reward or punishment. It has previously been shown that intact dopaminergic signaling from the ventral tegmental area/substantia nigra pars compacta (VTA/SNc) complex is necessary for vocal learning when songbirds modify their vocalizations to avoid hearing distorted auditory feedback (playbacks of white noise). However, it remains unclear whether dopaminergic signaling underlies vocal learning in response to more naturalistic errors (pitch-shifted feedback delivered via headphones). We used male Bengalese finches (Lonchura striata var. domestica) to test the hypothesis that the necessity of dopamine signaling is shared between the two types of learning. We combined 6-hydroxydopamine (6-OHDA) lesions of dopaminergic terminals within Area X, a basal ganglia nucleus critical for song learning, with a headphones learning paradigm that shifted the pitch of auditory feedback and compared their learning to that of unlesioned controls. We found that 6-OHDA lesions affected song behavior in two ways. First, over a period of days lesioned birds systematically lowered their pitch regardless of the presence or absence of auditory errors. Second, 6-OHDA lesioned birds also displayed severe deficits in sensorimotor learning in response to pitch-shifted feedback. Our results suggest roles for dopamine in both motor production and auditory error processing, and a shared mechanism underlying vocal learning in response to both distorted and pitch-shifted auditory feedback.


Assuntos
Adaptação Fisiológica/fisiologia , Gânglios da Base/fisiologia , Dopamina/fisiologia , Tentilhões/fisiologia , Destreza Motora/fisiologia , Vocalização Animal/fisiologia , Estimulação Acústica , Animais , Retroalimentação Sensorial/fisiologia , Masculino
9.
Neuron ; 93(5): 1058-1065.e4, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28279352

RESUMO

Functional circuits in the visual cortex require the coordinated activity of excitatory and inhibitory neurons. Molecular genetic approaches in the mouse have led to the "local non-specific pooling principle" of inhibitory connectivity, in which inhibitory neurons are untuned for stimulus features due to the random pooling of local inputs. However, it remains unclear whether this principle generalizes to species with a columnar organization of feature selectivity such as carnivores, primates, and humans. Here we use virally mediated GABAergic-specific GCaMP6f expression to demonstrate that inhibitory neurons in ferret visual cortex respond robustly and selectively to oriented stimuli. We find that the tuning of inhibitory neurons is inconsistent with the local non-specific pooling of excitatory inputs and that inhibitory neurons exhibit orientation-specific noise correlations with local and distant excitatory neurons. These findings challenge the generality of the non-specific pooling principle for inhibitory neurons, suggesting different rules for functional excitatory-inhibitory interactions in non-murine species.


Assuntos
Mapeamento Encefálico , Neurônios GABAérgicos/fisiologia , Rede Nervosa/fisiologia , Neuroimagem , Sinapses/fisiologia , Córtex Visual/fisiologia , Animais , Feminino , Furões , Inibição Neural/fisiologia , Neuroimagem/métodos , Orientação/fisiologia
10.
Nat Neurosci ; 19(12): 1743-1749, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27798629

RESUMO

A fundamental impediment to understanding the brain is the availability of inexpensive and robust methods for targeting and manipulating specific neuronal populations. The need to overcome this barrier is pressing because there are considerable anatomical, physiological, cognitive and behavioral differences between mice and higher mammalian species in which it is difficult to specifically target and manipulate genetically defined functional cell types. In particular, it is unclear the degree to which insights from mouse models can shed light on the neural mechanisms that mediate cognitive functions in higher species, including humans. Here we describe a novel recombinant adeno-associated virus that restricts gene expression to GABAergic interneurons within the telencephalon. We demonstrate that the viral expression is specific and robust, allowing for morphological visualization, activity monitoring and functional manipulation of interneurons in both mice and non-genetically tractable species, thus opening the possibility to study GABAergic function in virtually any vertebrate species.


Assuntos
Encéfalo/virologia , Dependovirus/isolamento & purificação , Neurônios GABAérgicos/virologia , Interneurônios/fisiologia , Vertebrados/virologia , Animais , Comportamento Animal , Encéfalo/metabolismo , Células Cultivadas , Dependovirus/genética , Feminino , Neurônios GABAérgicos/patologia , Vetores Genéticos/genética , Camundongos Endogâmicos C57BL
11.
Hippocampus ; 25(7): 798-812, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25524891

RESUMO

AMPA receptors are the principal mediators of excitatory synaptic transmission in the mammalian central nervous system. The subunit composition of these tetrameric receptors helps to define their functional properties, and may also influence the synaptic trafficking implicated in long-term synaptic plasticity. However, the organization of AMPAR subunits within the synapse remains unclear. Here, we use postembedding immunogold electron microscopy to study the synaptic organization of AMPAR subunits in stratum radiatum of CA1 hippocampus in the adult rat. We find that GluA1 concentrates away from the center of the synapse, extending at least 25 nm beyond the synaptic specialization; in contrast, GluA3 is uniformly distributed along the synapse, and seldom extends beyond its lateral border. The fraction of extrasynaptic GluA1 is markedly higher in small than in large synapses; no such effect is seen for GluA3. These observations imply that different kinds of AMPARs are differently trafficked to and/or anchored at the synapse.


Assuntos
Região CA1 Hipocampal/citologia , Subunidades Proteicas/metabolismo , Receptores de AMPA/metabolismo , Membranas Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Animais , Axônios/ultraestrutura , Técnica de Fratura por Congelamento , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Imunoeletrônica , Subunidades Proteicas/genética , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/genética , Sinapses/metabolismo , Sinapses/ultraestrutura , Membranas Sinápticas/ultraestrutura
12.
J Comp Neurol ; 518(16): 3221-36, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20575057

RESUMO

Sustained activity-dependent synaptic modifications require protein synthesis. Although proteins can be synthesized locally in dendrites, long-term changes also require nuclear signaling. Amyloid-beta protein precursor intracellular domain-associated protein-1 (AIDA-1), an abundant component of the biochemical postsynaptic density fraction, contains a nuclear localization sequence, making it a plausible candidate for synapse-to-nucleus signaling. We used immunohistochemistry to study the regional, cellular, and subcellular distribution of AIDA-1. Immunostaining was prominent in the hippocampus, cerebral cortex, and neostriatum. Along with diffuse staining of neuropil, fluorescence microscopy revealed immunostaining of excitatory synapses throughout the forebrain, and immunoreactive puncta within and directly outside the nucleus. Presynaptic staining was conspicuous in hippocampal mossy fibers. Electron microscopic analysis of material processed for postembedding immunogold revealed AIDA-1 label within postsynaptic densities in both hippocampus and cortex. Together with previous work, these data suggest that AIDA-1 serves as a direct signaling link between synapses and the nucleus in adult rat brain.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/anatomia & histologia , Proteínas de Transporte/genética , Imuno-Histoquímica , Masculino , Microscopia Eletrônica , Neurônios/citologia , Neurônios/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Sinapses/ultraestrutura
13.
Mol Pharmacol ; 67(5): 1470-84, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15703381

RESUMO

We have used site-directed mutagenesis of amino acids located within the S1 and S2 ligand binding domains of the NR2A N-methyl-D-aspartate (NMDA) receptor subunit to explore the nature of ligand binding. Wild-type or mutated NR1/NR2A NMDA receptors were expressed in Xenopus laevis oocytes and studied using two electrode voltage clamp. We investigated the effects of mutations in the S1 and S2 regions on the potencies of the agonists L-glutamate, L-aspartate, (R,S)-tetrazol-5yl-glycine, and NMDA. Mutation of each of the corresponding residues found in the NR2A receptor subunit, suggested to be contact residues in the GluR2 alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit, caused a rightward shift in the concentration-response curve for each agonist examined. None of the mutations examined altered the efficacy of glutamate as assessed by methanethiosulfonate ethylammonium potentiation of agonist-evoked currents. In addition, none of the mutations altered the potency of glycine. Homology modeling and molecular dynamics were used to evaluate molecular details of ligand binding of both wild-type and mutant receptors, as well as to explore potential explanations for agonist selectivity between glutamate receptor subtypes. The modeling studies support our interpretation of the mutagenesis data and indicate a similar binding strategy for L-glutamate and NMDA when they occupy the binding site in NMDA receptors, as has been proposed for glutamate binding to the GluR2 AMPA receptor subunit. Furthermore, we offer an explanation as to why "charge conserving" mutations of two residues in the binding pocket result in nonfunctional receptor channels and suggest a contributing molecular determinant for why NMDA is not an agonist at AMPA receptors.


Assuntos
Modelos Moleculares , Mutagênese Sítio-Dirigida/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...