Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1011155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274745

RESUMO

There is a growing trend for beers with novel flavor profiles, as consumers demand a more diversified product range. Such beers can be produced by using non-Saccharomyces yeasts. The yeast species Saccharomycopsis fibuligera is known to produce exceptionally pleasant plum and berry flavors during brewer's wort fermentation while its mycelia growth is most likely a technological challenge in industrial-scale brewing. To better understand and optimize the physiological properties of this yeast species during the brewing process, maltose and maltotriose uptake activity trials were performed. These revealed the existence of active transmembrane transporters for maltose in addition to the known extracellular amylase system. Furthermore, a single cell isolate of S. fibuligera was cultured, which showed significantly less mycelial growth during propagation and fermentation compared to the mother culture and would therefore be much more suitable for application on an industrial scale due to its better flocculation and clarification properties. Genetic differences between the two cultures could not be detected in a (GTG)5 rep-PCR fingerprint and there was hardly any difference in the fermentation process, sugar utilization and flavor profiles of the beers. Accordingly, the characteristic plum and berry flavor could also be perceived by using the culture from the single cell isolate, which was complemented by a dried fruit flavor. A fermentation temperature of 20°C at an original gravity of 10 °P proved to be optimal for producing a low-alcohol beer at around 0.8% (v/v) by applying the S. fibuligera yeast culture from the single cell isolate.

3.
FEMS Yeast Res ; 22(1)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36007922

RESUMO

Nonalcoholic beers are becoming increasingly popular, in part due to consumers' awareness of a healthier lifestyle. Additionally, consumers are demanding diversification in the product range, which can be offered by producing nonalcoholic beers using non-Saccharomyces yeasts for fermentation to create a wide variety of flavors. So far, little is known about the nutritionally relevant byproducts that these yeasts release during wort fermentation and whether these yeasts can be considered safe for food fermentations. To gain insights into this, the B vitamins of four different nonalcoholic beers fermented with the yeast species Saccharomycodes ludwigii, Cyberlindnera saturnus (two strains), and Kluyveromyces marxianus were analyzed. Furthermore, a total of 16 beers fermented with different non-Saccharomyces yeast strains were analyzed for biogenic amines. Additionally, stress tolerance tests were performed at 37°C and in synthetic human gastric juice in vitro. B vitamins were found in the four nonalcoholic beers in nutritionally relevant amounts so they could serve as a supplement for a balanced diet. Biogenic amines remained below the limit of determination in all 16 beers, and thus likely had no influence, while the stress tolerance tests gave a first indication that seven yeast strains could possibly tolerate the human gastric juice milieu.


Assuntos
Cerveja , Complexo Vitamínico B , Humanos , Cerveja/análise , Complexo Vitamínico B/metabolismo , Leveduras/metabolismo , Fermentação
4.
Sci Rep ; 12(1): 9251, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35661112

RESUMO

A historical beer, dated to the German Empire era, was recently found in northern Germany. Its chemical composition represents a unique source of insights into brewing culture of the late nineteenth century when pioneer innovations laid the foundations for industrial brewing. Complementary analytics including metabolomics, microbiological, sensory, and beer attribute analysis revealed its molecular profile and certify the unprecedented good storage condition even after 130 years in the bottle. Comparing its chemical signature to that of four hundred modern brews allowed to describe molecular fingerprints teaching us about technological aspects of historical beer brewing. Several critical production steps such as malting and germ treatment, wort preparation and fermentation, filtration and storage, and compliance with the Bavarian Purity Law left detectable molecular imprints. In addition, the aging process of the drinkable brew could be analyzed on a chemical level and resulted in an unseen diversity of hops- and Maillard-derived compounds. Using this archeochemical forensic approach, the historical production process of a culturally significant beverage could be traced and the ravages of time made visible.


Assuntos
Cerveja , Humulus , Cerveja/análise , Fermentação , Alemanha , Humulus/química
5.
Foods ; 11(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35407125

RESUMO

The diversification of beer flavor is becoming increasingly popular, especially in the field of non-alcoholic beers, where sales are growing steadily. While flavor substances of traditional beers can largely be traced back to defined secondary metabolites, the production of non-alcoholic beers with non-Saccharomyces yeasts generates novel fruity flavors, some of which cannot yet be assigned to specific flavor substances. In a recently published study, besides pear, cool mint sweets, and banana-like flavor, distinctive red berry and apple flavors were perceived in a non-alcoholic beer fermented with the yeast strain Cyberlindnera saturnus TUM 247, whose secondary metabolites were to be elucidated in this study. The trials were carried out using response surface methodology to examine the fermentation properties of the yeast strain and to optimize the beer with maximum fruitiness but minimal off-flavors and ethanol content. It turned out that a low pitching rate, a moderate fermentation temperature, and an original gravity of 10.5 °P gave the optimal parameters. Qualitative analysis of the secondary metabolites, in addition to standard analysis for traditional beers, was first performed using headspace-gas chromatography with olfactometry. (E)-ß-damascenone emerged as the decisive substance for the red berry and apple flavor and so this substance was then quantitated. Although (E)-ß-damascenone is a well-known secondary metabolite in beer and this substance is associated with apple or cooked apple- and berry-like flavors, it has not yet been reported as a main flavor component in non-alcoholic beers.

6.
Food Chem ; 361: 130112, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029904

RESUMO

We here report a comprehensive non-targeted analytical approach to describe the Maillard reaction in beer. By Fourier-transform ion cyclotron mass spectrometry (FT-ICR-MS), we were able to assign thousands of unambiguous molecular formulae to the mass signals and thus directly proceed to the compositional space of 250 analyzed beer samples. Statistical data analyses of the annotated compositions showed that the Maillard reaction is one of the driving forces of beer's molecular diversity leading to key compositional changes in the beer metabolome. Different visualization methods allowed us to map the systematic nature of Maillard reaction derived compounds. The typical molecular pattern, validated by an experimental Maillard reaction model system, pervades over 2,800 (40%) of the resolved small molecules. The major compositional changes were investigated by mass difference network analysis. We were able to reveal general reaction sequences that could be assigned to successive Maillard intermediate phase reactions by shortest path analysis.


Assuntos
Cerveja/análise , Análise de Alimentos , Reação de Maillard , Cor , Análise de Fourier , Espectrometria de Massas
7.
Food Microbiol ; 90: 103464, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336355

RESUMO

Achieving a high monosaccharide composition in malt wort is instrumental to achieve successful lactic acid bacteria fermentation of malt based beverages. The conversion of monosaccharides to alternative metabolites such as the sweet polyol, mannitol with heterofermentative strains presents a novel approach for sugar reduction and to compensate for the loss of sweetness. This work outlines the application of an adopted mashing regimen with the addition of exogenous enzymes to produce wort with high fructose content which can be applied to different malted grain types with consistently efficacious monosaccharide production for bacterial fermentation. The so produced worts are then fermented with Leuconostoc citreum TR116 a mannitol hyper-producer. Malted barley, oat and wheat were mashed to stimulate protein degradation and release of free amino acids along with the enzymatic conversion of starch to fermentable sugars. Amyloglucosidase and glucose isomerase treatment converted di- and oligo-saccharides to glucose and provided a moderate fructose concentration in malt worts which was consistent across the three cereals. Fructose was completely depleted during fermentation with Lc. Citreum TR116 and converted to mannitol with high efficiency (>90%) while overall sugar reduction was >25% in all malt worts. Differences in amino acid composition of malt worts did not significantly affect growth of Lc. Citreum TR116 but did affect the formation of the aroma compounds diacetyl and isoamyl alcohol. Organic acid production and acidification of wort was similar across cereal substrates and acetic acid formation was linked to yield of mannitol. The results suggest that differences in amino acid and fructose content of malt worts considerably change metabolite formation during fermentation with Lc. Citreum TR116, a mannitol hyper-producer. This work gives new insight into the development of consumer acceptable malt based beverages which will provide further options for the health conscious and diabetic consumer, an important step in the age of sugar overconsumption.


Assuntos
Grão Comestível/microbiologia , Fermentação , Alimentos Fermentados/microbiologia , Leuconostoc/metabolismo , Manitol/metabolismo , Açúcares/metabolismo , Avena/química , Avena/microbiologia , Reatores Biológicos , Frutose/metabolismo , Hordeum/química , Hordeum/microbiologia , Lactobacillales/metabolismo , Leuconostoc/crescimento & desenvolvimento , Triticum/química , Triticum/microbiologia
8.
FEMS Yeast Res ; 18(4)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29518233

RESUMO

Saccharomyces cerevisiae variety diastaticus is generally considered to be an obligatory spoilage microorganism and spoilage yeast in beer and beer-mixed beverages. Their super-attenuating ability causes increased carbon dioxide concentrations, beer gushing and potential bottle explosion along with changes in flavor, sedimentation and increased turbidity. This research shows clear differences in the super-attenuating properties of S. cerevisiae var. diastaticus yeast strains and their potential for industrial brewing applications. Nineteen unknown spoilage yeast cultures were obtained as isolates and characterized using a broad spectrum of genetic and phenotypic methods. Results indicated that all isolates represent genetically different S. cerevisiae var. diastaticus strains except for strain TUM PI BA 124. Yeast strains were screened for their super-attenuating ability and sporulation. Even if the STA1 gene responsible for super-attenuation by encoding for the enzyme glucoamylase could be verified by real-time polymerase chain reaction, no correlation to the spoilage potential could be demonstrated. Seven strains were further characterized focusing on brewing and sensory properties according to the yeast characterization platform developed by Meier-Dörnberg. Yeast strain TUM 3-H-2 cannot metabolize dextrin and soluble starch and showed no spoilage potential or super-attenuating ability even when the strain belongs to the species S. cerevisiae var. diastaticus. Overall, the beer produced with S. cerevisiae var. diastaticus has a dry and winey body with noticeable phenolic off-flavors desirable in German wheat beers.


Assuntos
Bebidas Alcoólicas/microbiologia , Microbiologia Industrial , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas de Tipagem Bacteriana , Metabolismo dos Carboidratos , Fermentação , Perfilação da Expressão Gênica , Genótipo , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/isolamento & purificação , Esporos Fúngicos/crescimento & desenvolvimento
9.
Int J Syst Evol Microbiol ; 67(9): 3452-3457, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28867002

RESUMO

A Gram-stain-positive, non-motile, rod-shaped bacterium, designated TUM BP 140423000-2250T (=DSM 100836T=LMG 29073T), was isolated from spoiled beer. This bacterium did not form spores, and was catalase-negative and facultatively anaerobic. Its taxonomic position was determined in a polyphasic study. The 16S rRNA gene sequence similarity data showed that the strain belonged to the Lactobacillus genus with the nearest neighbours being Lactobacillus koreensis DCY50T (sequence similarity 99.5 %), Lactobacillus yonginensis THK-V8T (99.2 %) and Lactobacillus parabrevis LMG 11984T (98.7 %). Sequence comparisons of additional phylogenetic markers, pheS and rpoA, confirmed the 16S rRNA gene sequence tree topology. The maximum rpoA sequence similarity was 92.3 % with L. yonginensis THK-V8T. The DNA G+C content of the isolate was 50.0 mol%. The DNA-DNA relatedness showed that strain TUM BP 140423000-2250T could be clearly distinguished from L. koreensis DCY 50T (30.8±0.4 %) and L. yonginensis THK-V8T (23.6±5.9 %). The major fatty acids were C18 : 1ω9c, summed feature 7 (comprised of C19 : 0 cyclo ω10c/C19 : 1ω6c) and C16 : 0. Based on phenotypic and genotypic studies, the authors propose classifying the new isolate as a representative of a novel species of the genus Lactobacillus, Lactobacillus cerevisiae sp. nov. The type strain is deposited at the Research Centre Weihenstephan for Brewing and Food Quality as TUM BP 140423000-2250T (=DSM 100836T=LMG 29073T).


Assuntos
Cerveja/microbiologia , Lactobacillus/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Alemanha , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Yeast ; 33(4): 129-44, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26647111

RESUMO

This study describes a screening system for future brewing yeasts focusing on non-Saccharomyces yeasts. The aim was to find new yeast strains that can ferment beer wort into a respectable beer. Ten Torulaspora delbrueckii strains were put through the screening system, which included sugar utilization tests, hop resistance tests, ethanol resistance tests, polymerase chain reaction fingerprinting, propagation tests, amino acid catabolism and anabolism, phenolic off-flavour tests and trial fermentations. Trial fermentations were analysed for extract reduction, pH drop, yeast concentration in bulk fluid and fermentation by-products. All investigated strains were able to partly ferment wort sugars and showed high tolerance to hop compounds and ethanol. One of the investigated yeast strains fermented all the wort sugars and produced a respectable fruity flavour and a beer of average ethanol content with a high volatile flavour compound concentration. Two other strains could possibly be used for pre-fermentation as a bio-flavouring agent for beers that have been post-fermented by Saccharomyces strains as a consequence of their low sugar utilization but good flavour-forming properties.


Assuntos
Cerveja/microbiologia , Torulaspora/metabolismo , Aminoácidos/análise , Cerveja/análise , Cerveja/normas , Metabolismo dos Carboidratos , Impressões Digitais de DNA , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , Fermentação , Concentração de Íons de Hidrogênio , Modelos Biológicos , Odorantes , Técnica de Amplificação ao Acaso de DNA Polimórfico , Reação em Cadeia da Polimerase em Tempo Real , Paladar , Temperatura , Torulaspora/química , Torulaspora/citologia , Torulaspora/genética
11.
J Sci Food Agric ; 93(10): 2372-83, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23605954

RESUMO

BACKGROUND: Barley rootlets, a malting by-product, are currently discarded or used as fodder. In this study, milled rootlets and Lactobacillus plantarum FST 1.7-fermented rootlets were incorporated into wheat bread. The objective was to formulate a high-nutrition alternative to wholemeal breads with improved technological attributes. RESULTS: Chemical analyses showed that rootlets contribute nutrients and bioactive compounds, including proteins, amino acids, fatty acids, carbohydrates, dietary fibre, polyphenols and minerals. Rootlets are particularly rich in essential amino acids, especially lysine, the typically limiting essential amino acid of cereals. Additionally, rootlets offer potential dietary fibre health benefits such as protection against cardiovascular disease, cancers and digestive disorders. CONCLUSION: Breads prepared with a (fermented) rootlet inclusion level of up to 10% compared favourably with wholemeal breads from nutritive, technological and textural perspectives. Furthermore, they were well accepted by sensory panellists. Using rootlets as a food ingredient would have the added benefit of increasing this malting by-product's market value.


Assuntos
Pão/análise , Qualidade dos Alimentos , Alimentos Fortificados , Hordeum/química , Lactobacillus plantarum , Raízes de Plantas/química , Triticum , Aminoácidos Essenciais/análise , Dieta , Fibras na Dieta , Fermentação , Humanos , Lisina/análise , Minerais/análise , Valor Nutritivo , Raízes de Plantas/microbiologia , Polifenóis/análise , Oligoelementos/análise
12.
Int J Food Microbiol ; 156(1): 32-43, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22424933

RESUMO

Barley infection with Fusarium species has been a long standing problem for the malting and brewing industries. In this study, we evaluate the impact of Fusarium culmorum infected raw barley on the final malt quality. Barley grains were infected for 5 days at optimum fungal growth conditions. Grains were fully characterized and compared to standard barley grains. Due to fungal infection, germinative energy of infected barley grains decreased by 45%; its water sensitivity increased dramatically, and grains accumulated 199 µg/kg of deoxynivalenol (DON). Barley grains were subsequently malted for 8 days, fully characterized and compared to standard malt grains. Fungal growth behavior was evaluated during malting using a PCR-based assay and mycotoxins were measured using HPLC. Fungal biomass increased in grains, during all stages of malting. Infected malt accumulated 8-times its DON concentration during malting. Kernel ultrastructure was evaluated using scanning electron and confocal laser scanning microscopy. Infected malt grains were characterized by extreme structural proteolytic, (hemi)-cellulolytic and starch deterioration with increased friability and fragmentation. Infected grains had higher protease and ß-glucanase activities, lower amylase activity, a greater proportion of free amino and soluble nitrogen, and a lower ß-glucan content. Malt loss was over 27% higher in infected malt in comparison to the control. The results of this study revealed that 20% F. culmorum infected barley kernels lead to a significant reduction in malt quality as well as mycotoxin formation.


Assuntos
Fusarium/crescimento & desenvolvimento , Hordeum/microbiologia , Bebidas Alcoólicas/microbiologia , Bebidas Alcoólicas/normas , Cromatografia Líquida de Alta Pressão , Grão Comestível , Contaminação de Alimentos , Microbiologia de Alimentos , Germinação , Hordeum/química , Hordeum/normas , Micotoxinas , Reação em Cadeia da Polimerase , Tricotecenos
13.
J Environ Sci Health B ; 45(7): 666-75, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20818520

RESUMO

Cobalt and silver are toxic for cells, but mechanisms of this toxicity are largely unknown. Analysis of Corynebacterium glutamicum proteome from cells grown in control and cobalt or silver enriched media was performed by two dimensional gel electrophoresis (2DE) followed by mass spectrometry. Our results indicate that the cell adapted to cobalt stress by inducing five defense mechanisms: Scavenging of free radicals, promotion of the generation of energy, reparation of DNA, reparation and biogenesis of Fe-S cluster proteins and supporting and reparation of cell wall. In response to the detoxification of Ag+ many proteins were up-regulated, which involved reparation of damaged DNA, minimizing the toxic effect of reactive oxygen species (ROS) and energy generation. Overexpression of proteins involved in cell wall biosynthesis (1,4-alpha-glucan branching enzyme and nucleoside-diphosphate-sugar epimerase) upon cobalt stress and induction of proteins involved in energy metabolism (2-methylcitrate dehydratase and 1, 2-methylcitrate synthase) upon silver demonstrate the potential of these enzymes as biomarkers of sub-lethal Ag+ and Co toxicity.


Assuntos
Cobalto/farmacologia , Corynebacterium glutamicum/efeitos dos fármacos , Corynebacterium glutamicum/fisiologia , Monitoramento Ambiental/métodos , Proteoma/metabolismo , Prata/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteoma/química , Proteoma/genética , Estresse Fisiológico/efeitos dos fármacos
14.
Proteomics ; 8(23-24): 4976-86, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18972541

RESUMO

Cadmium and mercury are well-known toxic heavy metals, but the basis of their toxicity is not well understood. In this study, we analyzed the cellular response of Corynebacterium glutamicum to sublethal concentrations of cadmium and mercury ions using 2-DE and MS. Mercury induced the over-expression of 13 C. glutamicum proteins, whereas 35 proteins were induced, and 8 proteins were repressed, respectively, under cadmium stress. The principal response to these metals was protection against oxidative stress, as demonstrated by upregulation of, e.g., Mn/Zn superoxide dismutase. Thioredoxin and oxidoreductase responded most strongly to cadmium and mercury. The increased level of heat-shock proteins, enzymes involved in energy metabolism, as well as in lipoic acid and terpenoid biosynthesis after the treatment of cells with cadmium was also registered. Identification of these proteins and their mapping into specific cellular processes enable a global understanding of the way in which C. glutamicum adapts to heavy-metal stress and may help to gain deeper insight into the toxic mechanism of these metals.


Assuntos
Cádmio/toxicidade , Corynebacterium glutamicum/efeitos dos fármacos , Mercúrio/toxicidade , Proteoma/análise , Proteínas de Bactérias/análise , Corynebacterium glutamicum/citologia , Corynebacterium glutamicum/crescimento & desenvolvimento , Eletroforese em Gel Bidimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...