Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767724

RESUMO

The current study report that the production of carbon quantum dots from Wrightia coccinea (WC) leaves using an eco-friendly, one-pot process. The structural, morphological, and optical characteristics of the CDs made from W. coccinea leaves by hydrothermal treatment at 200 °C for six hours were assessed using a variety of spectroscopic and electron microscopy techniques. The average size of CD was found to be approximately 5 nm using transmission electron microscopy (TEM) and the quantum yield of the produced CD was 15.6%. The synthesized CDs demonstrated extraordinary sensing capacity with a detection limit of 0.511 µM for ferric ion detection. The impact of varying pH levels on the fluorescence behavior of CD was thoroughly investigated. The maximum fluorescence intensity was examined at pH 3. Therefore, to detect Fe3+ ions as best as possible, the pH of the entire solution was adjusted to a value of 3. Furthermore, the pH-dependent fluorescence feature of CDs can be exploited by pH-sensitive fluorescence sensors. In the future, this might provide an added advantage for pH-based fluorescence sensor applications.

2.
Environ Technol ; 43(12): 1882-1891, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33241749

RESUMO

ABSTRACTSulfate reducing bacteria present in anaerobic granular sludge mediate the metabolic conversion of sulfate to sulfide. In the presence of heavy metals, sulfides precipitate as metal sulfides. In this study, dissimilatory sulfate reduction was coupled to the precipitation of zinc as ZnS quantum dots (QDs) at ambient conditions. The biogenic ZnS QDs had average sizes of 5-7 nm and were formed within 2-4 days of incubation. X-ray diffraction analysis indicated that the biosynthesised ZnS QDs possessed a crystalline cubic lattice structure. The organics present during ZnS biosynthesis were characterized using 3D-fluorescence excitation-emission measurements (FEEM) and the presence of an organic coating on the biogenic ZnS QDs was affirmed using FTIR analysis. The UV-visible absorption spectra of the samples exhibited a prominent absorption peak below 325 nm, which is the characteristic of the surface plasmon resonance of ZnS QDs. The band gap energy of the biogenic ZnS QDs was estimated to be 3.84 eV, comparable to the values reported for chemically synthesised ZnS QDs. The direct band gap energy indicates a large redox potential and carrier mobility, which capacitate the application of these QDs as effective photocatalysts for the photo-assisted decolourization of dyes, as illustrated for the dye congo red.


Assuntos
Pontos Quânticos , Anaerobiose , Corantes , Vermelho Congo , Pontos Quânticos/química , Esgotos , Sulfatos , Sulfetos/química , Compostos de Zinco/química
3.
J Hazard Mater ; 424(Pt C): 127572, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34810009

RESUMO

Freshwater demand will rise in the next couple of decades, with an increase in worldwide population growth and industrial development. The development activities, on one side, have increased the freshwater demand. However, the ground water has been degraded. Among the various organic and inorganic contaminants, arsenic is one of the most toxic elements. Arsenic contamination in ground waters is a major issue worldwide, especially in South and Southeast Asia. Various methods have been applied to provide a remedy to arsenic contamination, including adsorption, ion exchange, oxidation, coagulation-precipitation and filtration, and membrane filtration. Out of these methods, adsorption of As(III)/As(V) using nanomaterials and biopolymers has been used on a wide scale. The present review focuses on recently used nanomaterials and biopolymer composites for As(III)/As(V) sorptive removal. As(III)/As(V) adsorption mechanisms have been explored for various sorbents. The impacts of environmental factors such as pH and co-existing ions on As(III)/As(V) removal, have been discussed. Comparison of various nanosorbents and biopolymer composites for As(III)/As(V) adsorption and regeneration of exhausted materials has been included. Overall, this review will be useful to understand the sorption mechanisms involved in As(III)/As(V) removal by nanomaterials and biopolymer composites and their comparative sorption performances.


Assuntos
Arsênio , Nanoestruturas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arsênio/análise , Concentração de Íons de Hidrogênio , Água , Poluentes Químicos da Água/análise
4.
Luminescence ; 35(8): 1328-1337, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32510819

RESUMO

This manuscript presents a robust strategy for selective Pb(II) sensing based on a fluorescence turn-off mechanism using ZnS quantum dots (QDs) biosynthesized using Aspergillus sp. The biogenic nanoprobe displayed marked sensing efficiency in the presence of Pb ions over concentration ranges from 5 to 100 µM with limits of detection of around 2.45 µM. Performance optimization studies revealed that the maximum fluorescence quenching efficiency was obtained in the presence of [ZnS NPs] at 4 mg/ml, and alkaline pH of 10 recorded under stable ambient temperature for approximately 5 min for the quenching process. Advanced morphological analysis indicated that the bio-sensing mechanism was essentially a surface-based phenomenon in which the Pb ions were in very close proximity to the QDs and formed stable ground-state Pb-ZnS complexes, resulting in a quenched fluorescence of the QDs. Simultaneously, a larger fraction of Pb ions interacted via collisions with the excited ZnS QDs and resulted in an effective energy transfer from the excited QDs to the Pb ions, therefore resulting in an obvious decrease in QD fluorescence. These insights were well supported by theoretical analysis using Stern-Volmer plots and sphere-of-action models.


Assuntos
Pontos Quânticos , Corantes Fluorescentes , Sulfetos , Compostos de Zinco
5.
J Environ Manage ; 217: 56-70, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29597108

RESUMO

Pollution by heavy metals has been identified as a global threat since the inception of industrial revolution. Heavy metal contamination induces serious health and environmental hazards due to its toxic nature. Remediation of heavy metals by conventional methods is uneconomical and generates a large quantity of secondary wastes. On the other hand, biological agents such as plants, microorganisms etc. offer easy and eco-friendly ways for metal removal; hence, considered as efficient and alternative tools for metal removal. Bioremediation involves adsorption, reduction or removal of contaminants from the environment through biological resources (both microorganisms and plants). The heavy metal remediation properties of microorganisms stem from their self defense mechanisms such as enzyme secretion, cellular morphological changes etc. These defence mechanisms comprise the active involvement of microbial enzymes such as oxidoreductases, oxygenases etc, which influence the rates of bioremediation. Further, immobilization techniques are improving the practice at industrial scales. This article summarizes the various strategies inherent in the biological sorption and remediation of heavy metals.


Assuntos
Biodegradação Ambiental , Metais Pesados , Adsorção , Plantas , Inquéritos e Questionários
6.
Environ Sci Pollut Res Int ; 25(11): 10164-10183, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28815433

RESUMO

Nanotechnology is a rapidly growing scientific field and has attracted a great interest over the last few years because of its abundant applications. Green nanotechnology is a multidisciplinary field that has emerged as a rapidly developing research area, serving as an important technique that emphasize on making the procedure which are clean, non-hazardous, and especially environmentally friendly, in contrast with chemical and physical methods currently employed for nanosynthesis. The biogenic routes could be termed green as these do not involve the use of highly toxic chemicals or elevated energy inputs during the synthesis. Differences in the bio-reducing agents employed for nanosynthesis can lead to the production of nanoparticles (NPs) having distinct shapes, sizes, and bioactivity. The exquitiveness of the green fabricated NPs have capacitated their potential applications in various sectors such as biomedicine, pharmacology, food science, agriculture, and environmental engineering. The present review summarizes current knowledge on various biogenic synthesis methods, relying on plants, waste biomass, and biopolymers and their reducing and stabilizing agents to fabricate nanomaterials. The main emphasis has been given on the current status and future challenges related to the wide-scale fabrication of nanoparticles for environmental remediation, pathogenicity, and agricultural applications.


Assuntos
Materiais Biocompatíveis/síntese química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Materiais Biocompatíveis/química , Química Verde , Plantas
7.
Microb Pathog ; 114: 41-45, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29146498

RESUMO

Microfouling is evolving at a fast rate causing augmented mortality rates and damage worldwide. Until now, several remedial measures have been exploited to overcome microfouling, amongst them nanoparticles play a superior role. Currently, green synthesized nanoparticles have been centered owing to its eco-friendly, cost effectively and non-toxic nature which has also increased its industrial applications (biomedicine, food and textile). In the present research Silver Nanoparticles (Ag NPs) synthesized using marine red algae Gelidium amansii. The synthesized Ag NPs were characterized using UV-Vis Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Further the antibacterial potentials of Ag NPs were evaluated against pathogenic Gram positive (Staphylococcus aureus, Bacillus pumilus) and Gram negative bacterial (Escherichia coli, Pseudomonas aeruginosa, Vibrio parahaemolyticus, Aeromonas hydrophila) pathogens. Our findings suggest that Ag NPs synthesized using a green approach effectively reduce the bacterial growth by eliciting a bactericidal activity against the Gram Negative and Gram Positive biofilm forming pathogens. Thereby, Ag NPs synthesized using G. amansii could reflect as potential anti micro-fouling coatings for various biomedical and environmental applications.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Rodófitas/química , Prata/química , Bactérias/patogenicidade , Incrustação Biológica , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Extratos Vegetais/química , República da Coreia , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
8.
J Hazard Mater ; 324(Pt A): 54-61, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26849922

RESUMO

While a large number of microbial sources have recently emerged as potent sources for biosynthesis of chalcogenide quantum dots (QDs), studies regarding their biomimetic strategies that initiate QD biosynthesis are scarce. The present study describes several mechanistic aspects of PbSe QD biosynthesis using marine Aspergillus terreus. Scanning electron microscopic (SEM) studies indicated distinctive morphological features such as abrasion and agglomeration on the fungal biomass after the biosynthesis reaction. Further, the biomass subsequent to the heavy metal/metalloid precursor was characterized with spectral signatures typical to primary and secondary stress factors such as thiol compounds and oxalic acid using Fourier Transform Infra-Red Spectroscopic (FTIR) analysis. An increase in the total protein content in the reaction mixture after biosynthesis was another noteworthy observation. Further, metal-phytochelatins were identified as the prominent metal-ion trafficking components in the reaction mixture using Liquid Chromatography Mass Spectroscopic analysis (LCMS). Subsequent assays confirmed the involvement of metal binding peptides namely metallothioneins and other anti-oxidant enzymes that might have played a prominent role in the microbial metal detoxification system for the biosynthesis of PbSe QDs. Based on these findings a possible mechanism for the biosynthesis of PbSe QDs by marine A. terreus has been elucidated.


Assuntos
Proteínas Fúngicas/química , Chumbo/química , Pontos Quânticos/química , Compostos de Selênio/química , Aspergillus/química , Aspergillus/metabolismo , Biomassa , Quelantes/química , Metalotioneína/análise , Oxalatos/química , Fitoquelatinas , Espécies Reativas de Oxigênio , Água do Mar/microbiologia , Compostos de Sulfidrila/química , Superóxido Dismutase/análise
9.
Microb Biotechnol ; 9(1): 11-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26110980

RESUMO

Chalcogenide semiconductor quantum dots are emerging as promising nanomaterials due to their size tunable optoelectronic properties. The commercial synthesis and their subsequent integration for practical uses have, however, been contorted largely due to the toxicity and cost issues associated with the present chemical synthesis protocols. Accordingly, there is an immediate need to develop alternative environment-friendly synthesis procedures. Microbial factories hold immense potential to achieve this objective. Over the past few years, bacteria, fungi and yeasts have been experimented with as eco-friendly and cost-effective tools for the biosynthesis of semiconductor quantum dots. This review provides a detailed overview about the production of chalcogen-based semiconductor quantum particles using the inherent microbial machinery.


Assuntos
Bactérias/metabolismo , Calcogênios/metabolismo , Fungos/metabolismo , Nanopartículas/metabolismo , Pontos Quânticos/metabolismo , Microbiologia Industrial/economia , Microbiologia Industrial/métodos , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...