Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Digit Med ; 4(1): 13, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514805

RESUMO

GetUsPPE.org has built a centralized platform to facilitate matches for PPE donations, with an active role in matching donors with the appropriate recipients. A manual match process was limited by volunteer hours, thus we developed an open-access matching algorithm using a linear programming-based transportation model. From April 14, 2020 to April 27, 2020, the algorithm was used to match 83,136 items of PPE to 135 healthcare facilities in need across the United States with a median of 214.3 miles traveled, 100% of available donations matched, met the full quantity of requested PPE for 67% of recipients matched, and with 46% matches under 30 miles traveled. Compared with the period April 1, 2020 to April 13, 2020, when PPE matching was manual, the algorithm resulted in a 280% increase in matches/day. This publicly available automated algorithm could be deployed in future situations when the healthcare supply chain is insufficient.

2.
ACS Appl Mater Interfaces ; 11(33): 29773-29779, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31356053

RESUMO

Supported metallic nanoclusters (NCs, < 2 nm) are of great interests in various catalytic reactions with enhanced activities and selectivities, yet it is still challenging to efficiently and controllably synthesize ultrasmall NCs with a high-dispersal density. Here we report the in situ synthesis of surfactant-free, ultrasmall, and uniform NCs via a rapid thermal shock on defective substrates. This is achieved by using high-temperature synthesis with extremely fast kinetics while limiting the synthesis time down to milliseconds (e.g., ∼1800 K for 55 ms) to avoid aggregation. Through defect engineering and optimized loading, the particle size can be robustly tuned from >50 nm nanoparticles to <1 nm uniform NCs with a high-dispersal density. We demonstrate that the ultrasmall NCs exhibit drastically improved activities for catalytic CO oxidation as compared to their nanoparticulated counterparts. In addition, the reported method shows generality in synthesizing most metallic NCs (e.g., Pt, Ru, Ir, Ni) in an extremely facile and efficient manner. The ultrafast and controllable synthesis of uniform, high-density, and size-controllable NCs paves the way for the utilization and nanomanufacturing of NCs for a range of catalytic reactions.

3.
Science ; 359(6383): 1489-1494, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29599236

RESUMO

The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~105 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.

4.
ACS Cent Sci ; 3(4): 294-301, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28470046

RESUMO

Nanoparticles (NPs) dispersed within a conductive host are essential for a range of applications including electrochemical energy storage, catalysis, and energetic devices. However, manufacturing high quality NPs in an efficient manner remains a challenge, especially due to agglomeration during assembly processes. Here we report a rapid thermal shock method to in situ synthesize well-dispersed NPs on a conductive fiber matrix using metal precursor salts. The temperature of the carbon nanofibers (CNFs) coated with metal salts was ramped from room temperature to ∼2000 K in 5 ms, which corresponds to a rate of 400,000 K/s. Metal salts decompose rapidly at such high temperatures and nucleate into metallic nanoparticles during the rapid cooling step (cooling rate of ∼100,000 K/s). The high temperature duration plays a critical role in the size and distribution of the nanoparticles: the faster the process is, the smaller the nanoparticles are, and the narrower the size distribution is. We also demonstrated that the peak temperature of thermal shock can reach ∼3000 K, much higher than the decomposition temperature of many salts, which ensures the possibility of synthesizing various types of nanoparticles. This universal, in situ, high temperature thermal shock method offers considerable potential for the bulk synthesis of unagglomerated nanoparticles stabilized within a matrix.

5.
J Appl Phys ; 121(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-38903950

RESUMO

Exothermic reactions between oxophilic metals and transition/ post transition metal-oxides have been well documented owing to their fast reaction time scales (≈ 10 µs). This article examines the extent of reaction in nano-aluminum based thermite systems through a forensic inspection of the products formed during reaction. Three nanothermite systems (Al/CuO, Al/Bi2O3 and Al/WO3) were selected owing to their diverse combustion characteristics thereby providing sufficient generality and breadth to the analysis. Microgram quantities of the sample were coated onto a fine platinum wire, which was resistively heated at high heating rates (≈ 105 K/s) to ignite the sample. The subsequent products were captured/quenched very rapidly (≈ 500 µs) in order to preserve the chemistry/morphology during initiation and subsequent reaction and were quantitatively analyzed using electron microscopy (EM), focused ion beam (FIB) cross-sectioning followed by energy dispersive X-ray spectroscopy (EDX). Elemental examination of the cross-section of the quenched particles show oxygen predominantly localized in the regions containing aluminum, implying the occurrence of redox reaction. The Al/CuO system, which has simultaneous gaseous oxygen release and ignition (TIgnition ≈ TOxygen Release ), shows substantially lower oxygen content within the product particles as opposed to Al/Bi2O3 and Al/WO3 thermites, which are postulated to undergo a condensed phase reaction (TIgnition << TOxygen Release ). An effective Al:O composition for the interior section was obtained for all the mixtures, with the smaller particles generally showing higher oxygen content than the larger ones. The observed results were further corroborated with the reaction temperature, obtained using a high-speed spectro-pyrometer, and bomb calorimetry conducted on larger samples (≈ 15 mg). The results suggest that thermites that produce sufficient amounts of gaseous products generate smaller product particles and achieve higher extents of completion.

6.
Nat Commun ; 7: 12332, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27515900

RESUMO

Nanoparticles hosted in conductive matrices are ubiquitous in electrochemical energy storage, catalysis and energetic devices. However, agglomeration and surface oxidation remain as two major challenges towards their ultimate utility, especially for highly reactive materials. Here we report uniformly distributed nanoparticles with diameters around 10 nm can be self-assembled within a reduced graphene oxide matrix in 10 ms. Microsized particles in reduced graphene oxide are Joule heated to high temperature (∼1,700 K) and rapidly quenched to preserve the resultant nano-architecture. A possible formation mechanism is that microsized particles melt under high temperature, are separated by defects in reduced graphene oxide and self-assemble into nanoparticles on cooling. The ultra-fast manufacturing approach can be applied to a wide range of materials, including aluminium, silicon, tin and so on. One unique application of this technique is the stabilization of aluminium nanoparticles in reduced graphene oxide film, which we demonstrate to have excellent performance as a switchable energetic material.

7.
J Phys Chem A ; 119(24): 6171-8, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25914926

RESUMO

While ultrafine metal particles offer the possibility of very high energy density fuels, there is considerable uncertainty in the mechanism by which metal nanoparticles burn, and few studies that have examined the size dependence to their kinetics at the nanoscale. In this work we quantify the size dependence to the burning rate of titanium and zirconium nanoparticles. Nanoparticles in the range of 20-150 nm were produced via pulsed laser ablation, and then in-flight size-selected using differential electrical mobility. The size-selected oxide free metal particles were directly injected into the post flame region of a laminar flame to create a high temperature (1700-2500 K) oxidizing environment. The reaction was monitored using high-speed videography by tracking the emission from individual nanoparticles. We find that sintering occurs prior to significant reaction, and that once sintering is accounted for, the rate of combustion follows a near nearly (diameter)(1) power-law dependence. Additionally, Arrhenius parameters for the combustion of these nanoparticles were evaluated by measuring the burn times at different ambient temperatures. The optical emission from combustion was also used to model the oxidation process, which we find can be reasonably described with a kinetically controlled shrinking core model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...