Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 138(5): 401-416, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33895821

RESUMO

Circulating platelets interact with leukocytes to modulate host immune and thrombotic responses. In sepsis, platelet-leukocyte interactions are increased and have been associated with adverse clinical events, including increased platelet-T-cell interactions. Sepsis is associated with reduced CD8+ T-cell numbers and functional responses, but whether platelets regulate CD8+ T-cell responses during sepsis remains unknown. In our current study, we systemically evaluated platelet antigen internalization and presentation through major histocompatibility complex class I (MHC-I) and their effects on antigen-specific CD8+ T cells in sepsis in vivo and ex vivo. We discovered that both human and murine platelets internalize and proteolyze exogenous antigens, generating peptides that are loaded onto MHC-I. The expression of platelet MHC-I, but not platelet MHC-II, is significantly increased in human and murine platelets during sepsis and in human megakaryocytes stimulated with agonists generated systemically during sepsis (eg, interferon-γ and lipopolysaccharide). Upregulation of platelet MHC-I during sepsis increases antigen cross-presentation and interactions with CD8+ T cells in an antigen-specific manner. Using a platelet lineage-specific MHC-I-deficient mouse strain (B2Mf/f-Pf4Cre), we demonstrate that platelet MHC-I regulates antigen-specific CD8+ T-cell proliferation in vitro, as well as the number and functional responses of CD8+ T cells in vivo, during sepsis. Loss of platelet MHC-I reduces sepsis-associated mortality in mice in an antigen-specific setting. These data identify a new mechanism by which platelets, through MHC-I, process and cross-present antigens, engage antigen-specific CD8+ T cells, and regulate CD8+ T-cell numbers, functional responses, and outcomes during sepsis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Tolerância Imunológica , Sepse/imunologia , Adulto , Animais , Proliferação de Células , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Estudos Prospectivos , Sepse/genética
2.
J Leukoc Biol ; 109(5): 915-930, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33070381

RESUMO

Alpha-1-acid glycoprotein (AGP-1) is a positive acute phase glycoprotein with uncertain functions. Serum AGP-1 (sAGP-1) is primarily derived from hepatocytes and circulates as 12-20 different glycoforms. We isolated a glycoform secreted from platelet-activating factor (PAF)-stimulated human neutrophils (nAGP-1). Its peptide sequence was identical to hepatocyte-derived sAGP-1, but nAGP-1 differed from sAGP-1 in its chromatographic behavior, electrophoretic mobility, and pattern of glycosylation. The function of these 2 glycoforms also differed. sAGP-1 activated neutrophil adhesion, migration, and neutrophil extracellular traps (NETosis) involving myeloperoxidase, peptidylarginine deiminase 4, and phosphorylation of ERK in a dose-dependent fashion, whereas nAGP-1 was ineffective as an agonist for these events. Furthermore, sAGP-1, but not nAGP-1, inhibited LPS-stimulated NETosis. Interestingly, nAGP-1 inhibited sAGP-1-stimulated neutrophil NETosis. The discordant effect of the differentially glycosylated AGP-1 glycoforms was also observed in platelets where neither of the AGP-1 glycoforms alone stimulated aggregation of washed human platelets, but sAGP-1, and not nAGP-1, inhibited aggregation induced by PAF or ADP, but not by thrombin. These functional effects of sAGP-1 correlated with intracellular cAMP accumulation and phosphorylation of the protein kinase A substrate vasodilator-stimulated phosphoprotein and reduction of Akt, ERK, and p38 phosphorylation. Thus, the sAGP-1 glycoform limits platelet reactivity, whereas nAGP-1 glycoform also limits proinflammatory actions of sAGP-1. These studies identify new functions for this acute phase glycoprotein and demonstrate that the glycosylation of AGP-1 controls its effects on 2 critical cells of acute inflammation.


Assuntos
Plaquetas/metabolismo , Neutrófilos/metabolismo , Orosomucoide/metabolismo , Difosfato de Adenosina/farmacologia , Biomarcadores/metabolismo , Plaquetas/efeitos dos fármacos , AMP Cíclico/metabolismo , Armadilhas Extracelulares/metabolismo , Glicosilação/efeitos dos fármacos , Humanos , Modelos Biológicos , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Orosomucoide/agonistas , Peptídeos/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Polissacarídeos/metabolismo , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...