Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 26(4): 1136-53, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27509754

RESUMO

Conserving migratory birds is made especially difficult because of movement among spatially disparate locations across the annual cycle. In light of challenges presented by the scale and ecology of migratory birds, successful conservation requires integrating objectives, management, and monitoring across scales, from local management units to ecoregional and flyway administrative boundaries. We present an integrated approach using a spatially explicit energetic-based mechanistic bird migration model useful to conservation decision-making across disparate scales and locations. This model moves a Mallard-like bird (Anas platyrhynchos), through spring and fall migration as a function of caloric gains and losses across a continental-scale energy landscape. We predicted with this model that fall migration, where birds moved from breeding to wintering habitat, took a mean of 27.5 d of flight with a mean seasonal survivorship of 90.5% (95% Cl = 89.2%, 91.9%), whereas spring migration took a mean of 23.5 d of flight with mean seasonal survivorship of 93.6% (95% CI = 92.5%, 94.7%). Sensitivity analyses suggested that survival during migration was sensitive to flight speed, flight cost, the amount of energy the animal could carry, and the spatial pattern of energy availability, but generally insensitive to total energy availability per se. Nevertheless, continental patterns in the bird-use days occurred principally in relation to wetland cover and agricultural habitat in the fall. Bird-use days were highest in both spring and fall in the Mississippi Alluvial Valley and along the coast and near-shore environments of South Carolina. Spatial sensitivity analyses suggested that locations nearer to migratory endpoints were less important to survivorship; for instance, removing energy from a 1036 km2 stopover site at a time from the Atlantic Flyway suggested coastal areas between New Jersey and North Carolina, including the Chesapeake Bay and the North Carolina piedmont, are essential locations for efficient migration and increasing survivorship during spring migration but not locations in Ontario and Massachusetts. This sort of spatially explicit information may allow decision-makers to prioritize their conservation actions toward locations most influential to migratory success. Thus, this mechanistic model of avian migration provides a decision-analytic medium integrating the potential consequences of local actions to flyway-scale phenomena.


Assuntos
Migração Animal , Anseriformes/fisiologia , Metabolismo Energético/fisiologia , Modelos Biológicos , Animais , Canadá , Monitoramento Ambiental , Estados Unidos
2.
PLoS One ; 11(6): e0156973, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27257671

RESUMO

Ex situ conservation in germplasm and living collections is a major focus of global plant conservation strategies. Prioritizing species for ex situ collection is a necessary component of this effort for which sound strategies are needed. Phylogenetic considerations can play an important role in prioritization. Collections that are more phylogenetically diverse are likely to encompass more ecological and trait variation, and thus provide stronger conservation insurance and richer resources for future restoration efforts. However, phylogenetic criteria need to be weighed against other, potentially competing objectives. We used ex situ collection and threat rank data for North American angiosperms to investigate gaps in ex situ coverage and phylogenetic diversity of collections and to develop a flexible framework for prioritizing species across multiple objectives. We found that ex situ coverage of 18,766 North American angiosperm taxa was low with respect to the most vulnerable taxa: just 43% of vulnerable to critically imperiled taxa were in ex situ collections, far short of a year-2020 goal of 75%. In addition, species held in ex situ collections were phylogenetically clustered (P < 0.001), i.e., collections comprised less phylogenetic diversity than would be expected had species been drawn at random. These patterns support incorporating phylogenetic considerations into ex situ prioritization in a manner balanced with other criteria, such as vulnerability. To meet this need, we present the 'PIECES' index (Phylogenetically Informed Ex situ Conservation of Endangered Species). PIECES integrates phylogenetic considerations into a flexible framework for prioritizing species across competing objectives using multi-criteria decision analysis. Applying PIECES to prioritizing ex situ conservation of North American angiosperms, we show strong return on investment across multiple objectives, some of which are negatively correlated with each other. A spreadsheet-based decision support tool for North American angiosperms is provided; this tool can be customized to align with different conservation objectives.


Assuntos
Espécies em Perigo de Extinção/estatística & dados numéricos , Plantas/classificação , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Técnicas de Apoio para a Decisão , Magnoliopsida/classificação , América do Norte , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...